Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Answer:
a) \(\frac{5x}{2x+2}+1=\frac{6}{x+1}\)
\(\Rightarrow\frac{5x}{2\left(x+1\right)}+\frac{2\left(x+1\right)}{2\left(x+1\right)}=\frac{12}{2\left(x+1\right)}\)
\(\Rightarrow5x+2x+2-12=0\)
\(\Rightarrow7x-10=0\)
\(\Rightarrow x=\frac{10}{7}\)
b) \(\frac{x^2-6}{x}=x+\frac{3}{2}\left(ĐK:x\ne0\right)\)
\(\Rightarrow x^2-6=x^2+\frac{3}{2}x\)
\(\Rightarrow\frac{3}{2}x=-6\)
\(\Rightarrow x=-4\)
c) \(\frac{3x-2}{4}\ge\frac{3x+3}{6}\)
\(\Rightarrow\frac{3\left(3x-2\right)-2\left(3x+3\right)}{12}\ge0\)
\(\Rightarrow9x-6-6x-6\ge0\)
\(\Rightarrow3x-12\ge0\)
\(\Rightarrow x\ge4\)
d) \(\left(x+1\right)^2< \left(x-1\right)^2\)
\(\Rightarrow x^2+2x+1< x^2-2x+1\)
\(\Rightarrow4x< 0\)
\(\Rightarrow x< 0\)
e) \(\frac{2x-3}{35}+\frac{x\left(x-2\right)}{7}\le\frac{x^2}{7}-\frac{2x-3}{5}\)
\(\Rightarrow\frac{2x-3+5\left(x^2-2x\right)}{35}\le\frac{5x^2-7\left(2x-3\right)}{35}\)
\(\Rightarrow2x-3+5x^2-10x\le5x^2-14x+21\)
\(\Rightarrow6x\le24\)
\(\Rightarrow x\le4\)
f) \(\frac{3x-2}{4}\le\frac{3x+3}{6}\)
\(\Rightarrow\frac{3\left(3x-2\right)-2\left(3x+3\right)}{12}\le0\)
\(\Rightarrow9x-6-6x-6\le0\)
\(\Rightarrow3x\le12\)
\(\Rightarrow x\le4\)
Ta có : \(Q=2x-2-3x^2=-\left(3x^2-2x+2\right)=-[3\left(x^2-\frac{2}{3}x+\frac{1}{9}\right)+\frac{17}{9}]\)
\(=-[3\left(x-\frac{1}{3}\right)^2+\frac{17}{9}]\)
Ta có : \(\left(x-\frac{1}{3}\right)^2\ge0=>-[3\left(x-\frac{1}{3}\right)^2+\frac{17}{9}]\ge0\)
Dấu bằng xảy ra khi \(x-\frac{1}{3}=0=>x=\frac{1}{3}\)
Vậy \(Q_{max}=\frac{17}{9}\)khi \(x=\frac{1}{3}\)
B3:\(\Rightarrow90.10^n-10^n.10^2+10^n.10-20\Rightarrow10^n.\left(90-10^2\right)+10^n.10-20\)
\(\Rightarrow10^n.\left(90-100\right)+10^n.10-20\Rightarrow-10.10^n+10^n.10-20\Rightarrow-20\)
\(A=-\left(x^2-x+5\right)=-\left(x^2-2.\frac{1}{2}x+\frac{1}{4}+\frac{19}{4}\right)=-\left[\left(x-\frac{1}{2}\right)^2+\frac{19}{4}\right]\)
\(=-\left(x-\frac{1}{2}\right)^2-\frac{19}{4}\le-\frac{19}{4}\)
Vậy \(A_{min}=-\frac{19}{4}\Leftrightarrow x-\frac{1}{2}=0\Rightarrow x=\frac{1}{2}\)
2. Ta có: A = x2 - 6x + 5 = (x2 - 6x + 9) - 4 = (x - 3)2 - 4
Ta luôn có: (x - 3)2 \(\ge\)0 \(\forall\)x
=> (x - 3)2 - 4 \(\ge\)-4 \(\forall\)x
Dấu "=" xảy ra <=> x - 3 = 0 <=> x = 3
Vậy MinA = -4 tại x = 3
Ta có: B = 4x2 - 8x + 7 = 4(x2 - 2x + 1) + 3 = 4(x - 1)2 + 3
Ta luôn có: 4(x - 1)2 \(\ge\)0 \(\forall\)x
=> 4(x - 1)2 + 3 \(\ge\)3 \(\forall\)x
Dấu "=" xảy ra <=> x - 1 = 0 <=> x = 1
vậy MinB = 3 tại x = 1
Ta có: C = 2x2 + 4x - 6 = 2(x2 + 2x + 1) - 8 = 2(x + 1)2 - 8
Ta luôn có: 2(x + 1)2 \(\ge\)0 \(\forall\)x
=> 2(x + 1)2 - 8 \(\ge\)-8 \(\forall\)x
Dấu "=" xảy ra <=> x + 1 = 0 <=> x = -1
Vậy MinC = -8 tại x = -1
1/
\(A=x^2-6x+5\)
\(A=x^2-2\cdot3x+3^2-3^2+5\)
\(A=\left(x-3\right)^2-3^2+5\)
\(A=\left(x-3\right)^2-9+5\)
\(A=\left(x-3\right)^2-4\)
mà \(\left(x-3\right)^2\ge0\Rightarrow\left(x-3\right)^2-4\ge-4\)
\(\Rightarrow GTNNA\left(x^2-6x+5\right)=-4\)
với \(\left(x-3\right)^2=0;x=3\)
\(B=4x^2-8x+7\)
\(B=4\left(x^2-2x+\frac{7}{4}\right)\)
\(B=4\left(x^2-2\cdot1x+1-1+\frac{7}{4}\right)\)
\(B=4\left(x-1\right)^2+3\)
\(\left(x-1\right)^2\ge0\Rightarrow4\left(x^2-1\right)^2+3\ge3\)
\(\Rightarrow GTNNB=3\)
với \(\left(x-1\right)^2=0;x=1\)
\(C=2x^2+4x-6\)
\(C=2\left(x^2+2x-3\right)\)
\(C=2\left(x^2+2\cdot1x+1-1-3\right)\)
\(C=\left(x+1\right)^2-8\)
có\(\left(x+1\right)^2\ge0\Rightarrow\left(x+1\right)^2-8\ge-8\)
\(\Rightarrow GTNNC=-8\)
với \(\left(x+1\right)^2=0;x=-1\)
2.
c) \(C=2x^2+4x-6=2\left(x^2+2x+1\right)-8\)
\(=2\left(x+1\right)^2-8\ge-8\forall x\)
Dấu"=" xảy ra<=> \(2\left(x+1\right)^2=0\Leftrightarrow x=-1\)
3.
c) \(C=-3x^2-6x+9=-3\left(x^2+2x+1\right)+12\)
\(=-3\left(x+1\right)^2+12\le12\forall x\)
Dấu "=" xảy ra<=> \(-3\left(x+1\right)^2=0\Leftrightarrow x=-1\)
\(2,GTNN\)
\(A=x^2-6x+5=x^2+6x+9-4\)
\(=\left(x+3\right)^2-4\ge-4\)
\(A_{min}=-4\Leftrightarrow\left(x+3\right)^2=0\Rightarrow x=-3\)
\(B=4x^2-8x+7=4\left(x^2-2x+\frac{7}{4}\right)\)
\(=4\left(x^2-2x+1+\frac{3}{4}\right)=4\left(x-1\right)^2+3\ge3\)
\(\Rightarrow B_{min}=3\Leftrightarrow\left(x-1\right)^2=0\Rightarrow x=1\)
\(C=2x^2+4x-6=2\left(x^2+2x-3\right)\)
\(=2\left(x^2+2x+1-4\right)=2\left(x+1\right)^2-8\ge-8\)
\(\Rightarrow C_{min}=-8\Leftrightarrow\left(x+1\right)^2=0\Rightarrow x=-1\)
\(3,GTLN\)
\(A=-x^2+2x-3=-\left(x^2-2x+3\right)\)
\(=-\left(x^2-2x+1-4\right)=-\left(x-1\right)^2+4\le4\)
\(A_{max}=4\Leftrightarrow-\left(x-1\right)^2=0\Rightarrow x=1\)
\(B=-9x^2+6x-4=-\left[9x^2-6x+4\right]\)
\(=-\left[\left(3x\right)^2-6x+1+3\right]=-\left(3x-1\right)^2-3\)
\(B_{max}=-3\Leftrightarrow-\left(3x-1\right)^2=0\Rightarrow x=\frac{1}{3}\)
\(C=-3x^2-6x+9=-3\left(x^2+2x-3\right)\)
\(=-3\left(x^2+2x+1-4\right)=-3\left(x+1\right)^2+12\)
\(C_{max}=12\Leftrightarrow-3\left(x+1\right)^2=0\Rightarrow x=-1\)
PT coó giá trị lớn nhất khi x=1