Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cac can thuc co nghia khi
a) \(x^2-2x+5\ge0\Leftrightarrow\left(x-1\right)^2+4\ge0\)
Dieu nay luon dung nen can thuc co nghia voi moi gia tri cua x
b) \(\sqrt{\frac{x-4}{x-1}}co.nghia\Leftrightarrow\hept{\begin{cases}x\ne1\\\left(x-4\right)\left(x-1\right)\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne1\\x\ge4.hoac.x< 1\end{cases}}}\)
c) \(\sqrt{x^2-24}co.nghia\Leftrightarrow x^2\ge24\Leftrightarrow\orbr{\begin{cases}x\ge2\sqrt{6}\\x\le-2\sqrt{6}\end{cases}}\)
Bài 1:
a) Để A,B có nghĩa \(\Leftrightarrow\begin{cases}2x+3\ge0\\x-3>0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge-\frac{3}{2}\\x>3\end{cases}\)\(\Leftrightarrow x>3\)
b) Để A= B
\(\Leftrightarrow\sqrt{\frac{2x+3}{x-3}}=\frac{\sqrt{2x+3}}{\sqrt{x-3}}\)
\(\Leftrightarrow\sqrt{\frac{2x+3}{x-3}}-\sqrt{\frac{2x+3}{x-3}}=0\)
\(\Leftrightarrow0x=0\) (thỏa mãn với mọi x>3)
Vậy x>3 thì A=B
a, ĐKXĐ A: \(\frac{2x+3}{x-3}\)\(\frac{2x+3}{x-3}\ge0\Rightarrow\left[\begin{array}{nghiempt}\hept{\begin{cases}2x+3\ge0\\x-3>0\end{array}\right.\\\hept{\begin{cases}2x-3\le0\\x-3< 0\end{array}\right.\end{cases}\Rightarrow\left[\begin{array}{nghiempt}\hept{\begin{cases}x\ge-\frac{3}{2}\\x>3\end{array}\right.\\\hept{\begin{cases}x\le-\frac{3}{2}\\x< 3\end{array}\right.\end{cases}\Rightarrow}\left[\begin{array}{nghiempt}x>-\frac{3}{2}\\x< 3\end{array}\right.}\)
ĐKXĐ B: \(\begin{cases}2x+3\ge0\\x-3>0\end{cases}\Rightarrow\begin{cases}x\ge-\frac{3}{3}\\x>3\end{cases}}\)
Câu 1
a)
Để biểu thức A có nghĩa thì \(2x^2-3x+1\ge0\Leftrightarrow\left(x-1\right)\left(2x-1\right)\ge0\)
\(\Leftrightarrow x\ge1\)
b)
Để biểu thức B có nghĩa thì \(x-1\ge0;2x-1\ge0\Rightarrow x\ge1\)
c)
Với \(x\ge1\) thì biểu thức A luôn luôn bằng biểu thức B
d)
Vô lý vcl
Câu 2
Xài BĐT Bunhiacopski:
\(A^2=\left(2x+3y\right)^2=\left(2\cdot x+3\cdot y\right)^2\le13\left(x^2+y^2\right)=1521\)
\(\Rightarrow A\le39\)
Câu 1:
a) A=\(\sqrt{2x^2-3x+1}\)
ĐKXĐ: \(\orbr{\begin{cases}x\le\frac{1}{2}\\x\ge1\end{cases}}\)
b) B=\(\sqrt{x-1}\cdot\sqrt{2x-1}\)
ĐKXĐ:\(\orbr{\begin{cases}x\ge1\\x\ge\frac{1}{2}\end{cases}}\)
=>\(x\ge1\)
c) Với \(x\ge1\)thì A=B đc xác định
d) Với \(x\le\frac{1}{2}\)thì A có nghĩa,B không có nghĩa
a)+) \(A=\sqrt{2x^2-3x+1}=\sqrt{2x^2-2x-x+1}\)
\(=\sqrt{2x\left(x-1\right)-\left(x-1\right)}=\sqrt{\left(2x-1\right)\left(x-1\right)}\)
Để A có nghĩa thì \(\hept{\begin{cases}2x-1\ge0\\x-1\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge\frac{1}{2}\\x\ge1\end{cases}}\Leftrightarrow x\ge1\)
hoặc \(\hept{\begin{cases}2x-1\le0\\x-1\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le\frac{1}{2}\\x\le1\end{cases}}\Leftrightarrow x\le\frac{1}{2}\)
A có nghĩa\(\Leftrightarrow\orbr{\begin{cases}x\ge1\\x\le\frac{1}{2}\end{cases}}\)
+) B có nghĩa\(\Leftrightarrow\hept{\begin{cases}x-1\ge0\\2x-1\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge1\\x\ge\frac{1}{2}\end{cases}}\Leftrightarrow x\ge1\)
c) \(A=B\Leftrightarrow\sqrt{\left(x-1\right)\left(2x-1\right)}=\sqrt{x-1}.\sqrt{2x-1}\)
\(\Leftrightarrow\hept{\begin{cases}x-1\ge0\\2x-1\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge1\\x\ge\frac{1}{2}\end{cases}}\Leftrightarrow x\ge1\)
Vậy \(x\ge1\)thì A = B
d) \(x\le\frac{1}{2}\)
a) Giá trị của x để biểu thức có nghĩa:
\(\sqrt{\frac{-5}{-x-7}}\ne0\Leftrightarrow\frac{-5}{-x-7}\ne0\Leftrightarrow-x-7\ne0\Leftrightarrow x\ne-7\)
b) Giá trị của x để biểu thức có nghĩa:
\(\sqrt{x^2+2x+3}\ne0\Leftrightarrow x^2+2x+1\ne-2\Leftrightarrow\left(x+1\right)^2\ne-2\Leftrightarrow x+1\ne-\sqrt{2}\Leftrightarrow x\ne-\sqrt{2}-1\)
Bài 1:
1. \(\sqrt{a}\)có nghĩa <=> \(a\ge0\)
2. a) \(\sqrt{2x+6}\)có nghĩa <=> \(2x+6\ge0\)
\(\Leftrightarrow2x\ge-6\)
\(x\ge-3\)
b)\(\sqrt{\frac{-2}{2x-3}}\) có nghĩa \(\Leftrightarrow\frac{-2}{2x-3}\ge0\)
có -2 < 0
\(\Leftrightarrow\hept{\begin{cases}2x-3\ne0\\2x-3\le0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x\ne3\\2x\le3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ne\frac{3}{2}\\x\le\frac{3}{2}\end{cases}}\)
\(\Rightarrow x< \frac{3}{2}\)
Bài 4 :
\(P=\left(\frac{\sqrt{x}}{\left(\sqrt{x}-1\right).\sqrt{x}}-\frac{\sqrt{x}-1}{\sqrt{x}.\left(\sqrt{x}-1\right)}\right):\left(\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\right)\)
\(\Leftrightarrow\left(\frac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}.\left(\sqrt{x}-1\right)}\right):\left(\frac{\left(x-1\right)-\left(x-4\right)}{\left(\sqrt{x}-2\right).\left(\sqrt{x}-1\right)}\right)\)
\(\Leftrightarrow\left(\frac{1}{\sqrt{x}.\left(\sqrt{x}-1\right)}\right):\left(\frac{3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\right)\)
\(\Leftrightarrow\left(\frac{1}{\sqrt{x}.\left(\sqrt{x}-1\right)}\right).\left(\frac{\left(\sqrt{x}-2\right).\left(\sqrt{x}-1\right)}{3}\right)\)
\(\Leftrightarrow\frac{\sqrt{x}-2}{3\sqrt{x}}\) \(\left(ĐKXĐ:x>0;x\ne4;x\ne1\right)\)
b) \(P=\frac{1}{4}\)
\(\Leftrightarrow\frac{\sqrt{x}-2}{3\sqrt{x}}=\frac{1}{4}\)
\(\Leftrightarrow4\sqrt{x}-8=3\sqrt{x}\)
\(\Leftrightarrow4\sqrt{x}-3\sqrt{x}=8\)
\(\Leftrightarrow\sqrt{x}=8\)
\(\Leftrightarrow x=64\left(TMĐXĐ\right)\)
Vậy khi \(P=\frac{1}{4}\) thì x=64
Căn thức có nghĩa \(\Leftrightarrow x^2-3\ge0\Rightarrow\sqrt{3}\le x\le-\sqrt{3}\)
\(\Leftrightarrow x^2-2x-3\ge0\)
\(\Leftrightarrow x\left(x+2\right)\ge0\)
\(\Leftrightarrow x^2+5x+6\ge0\)
Bạn tìm điều kiện để cái trong căn lớn hơn bằng 0 la ok luôn mà
\(\sqrt{x^2-2x-3}\)
Để căn thức có nghĩa \(\Leftrightarrow x^2-2x-3\ge0\)
\(\Leftrightarrow\orbr{\begin{cases}x\le-1\\x\ge3\end{cases}}\)
Điều kiện
\(x^2-2x-3\ge0\)
Vế trái có nghiệm là -1 và 3
=> điều kiện là \(x\le-1\)hoặc \(x\ge3\)