\(\sqrt{x^2-2x-3}\)

 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2017

\(\sqrt{x^2-2x-3}\)

Để căn thức có nghĩa \(\Leftrightarrow x^2-2x-3\ge0\)

\(\Leftrightarrow\orbr{\begin{cases}x\le-1\\x\ge3\end{cases}}\)

17 tháng 7 2017

Điều kiện

\(x^2-2x-3\ge0\)

Vế trái có nghiệm là -1 và 3

=> điều kiện là \(x\le-1\)hoặc \(x\ge3\)

16 tháng 9 2019

Cac can thuc co nghia khi

a) \(x^2-2x+5\ge0\Leftrightarrow\left(x-1\right)^2+4\ge0\)

Dieu nay luon dung nen can thuc co nghia voi moi gia tri cua x

b) \(\sqrt{\frac{x-4}{x-1}}co.nghia\Leftrightarrow\hept{\begin{cases}x\ne1\\\left(x-4\right)\left(x-1\right)\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne1\\x\ge4.hoac.x< 1\end{cases}}}\)

c) \(\sqrt{x^2-24}co.nghia\Leftrightarrow x^2\ge24\Leftrightarrow\orbr{\begin{cases}x\ge2\sqrt{6}\\x\le-2\sqrt{6}\end{cases}}\)

15 tháng 8 2016

Bài 1:
a) Để A,B có nghĩa \(\Leftrightarrow\begin{cases}2x+3\ge0\\x-3>0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge-\frac{3}{2}\\x>3\end{cases}\)\(\Leftrightarrow x>3\)

b) Để A= B

\(\Leftrightarrow\sqrt{\frac{2x+3}{x-3}}=\frac{\sqrt{2x+3}}{\sqrt{x-3}}\)

\(\Leftrightarrow\sqrt{\frac{2x+3}{x-3}}-\sqrt{\frac{2x+3}{x-3}}=0\)

\(\Leftrightarrow0x=0\) (thỏa mãn với mọi x>3)

Vậy x>3 thì A=B

 

 

 

15 tháng 8 2016

a, ĐKXĐ A: \(\frac{2x+3}{x-3}\)\(\frac{2x+3}{x-3}\ge0\Rightarrow\left[\begin{array}{nghiempt}\hept{\begin{cases}2x+3\ge0\\x-3>0\end{array}\right.\\\hept{\begin{cases}2x-3\le0\\x-3< 0\end{array}\right.\end{cases}\Rightarrow\left[\begin{array}{nghiempt}\hept{\begin{cases}x\ge-\frac{3}{2}\\x>3\end{array}\right.\\\hept{\begin{cases}x\le-\frac{3}{2}\\x< 3\end{array}\right.\end{cases}\Rightarrow}\left[\begin{array}{nghiempt}x>-\frac{3}{2}\\x< 3\end{array}\right.}\)

ĐKXĐ B: \(\begin{cases}2x+3\ge0\\x-3>0\end{cases}\Rightarrow\begin{cases}x\ge-\frac{3}{3}\\x>3\end{cases}}\)

25 tháng 7 2020

Câu 1

a)

Để biểu thức A có nghĩa thì \(2x^2-3x+1\ge0\Leftrightarrow\left(x-1\right)\left(2x-1\right)\ge0\)

\(\Leftrightarrow x\ge1\)

b)

Để biểu thức B có nghĩa thì \(x-1\ge0;2x-1\ge0\Rightarrow x\ge1\)

c)

Với \(x\ge1\) thì biểu thức A luôn luôn bằng biểu thức B

d)

Vô lý vcl

Câu 2

Xài BĐT Bunhiacopski:

\(A^2=\left(2x+3y\right)^2=\left(2\cdot x+3\cdot y\right)^2\le13\left(x^2+y^2\right)=1521\)

\(\Rightarrow A\le39\)

26 tháng 7 2020

Câu 1:

a) A=\(\sqrt{2x^2-3x+1}\)

ĐKXĐ: \(\orbr{\begin{cases}x\le\frac{1}{2}\\x\ge1\end{cases}}\)

b) B=\(\sqrt{x-1}\cdot\sqrt{2x-1}\)

ĐKXĐ:\(\orbr{\begin{cases}x\ge1\\x\ge\frac{1}{2}\end{cases}}\)

=>\(x\ge1\)

c) Với \(x\ge1\)thì A=B đc xác định

d) Với \(x\le\frac{1}{2}\)thì A có nghĩa,B không có nghĩa

30 tháng 7 2019

a)+) \(A=\sqrt{2x^2-3x+1}=\sqrt{2x^2-2x-x+1}\)

\(=\sqrt{2x\left(x-1\right)-\left(x-1\right)}=\sqrt{\left(2x-1\right)\left(x-1\right)}\)

Để A có nghĩa thì \(\hept{\begin{cases}2x-1\ge0\\x-1\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge\frac{1}{2}\\x\ge1\end{cases}}\Leftrightarrow x\ge1\)

hoặc \(\hept{\begin{cases}2x-1\le0\\x-1\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le\frac{1}{2}\\x\le1\end{cases}}\Leftrightarrow x\le\frac{1}{2}\)

A có nghĩa\(\Leftrightarrow\orbr{\begin{cases}x\ge1\\x\le\frac{1}{2}\end{cases}}\)

+) B có nghĩa\(\Leftrightarrow\hept{\begin{cases}x-1\ge0\\2x-1\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge1\\x\ge\frac{1}{2}\end{cases}}\Leftrightarrow x\ge1\)

30 tháng 7 2019

c) \(A=B\Leftrightarrow\sqrt{\left(x-1\right)\left(2x-1\right)}=\sqrt{x-1}.\sqrt{2x-1}\)

\(\Leftrightarrow\hept{\begin{cases}x-1\ge0\\2x-1\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge1\\x\ge\frac{1}{2}\end{cases}}\Leftrightarrow x\ge1\)

Vậy \(x\ge1\)thì A = B

d) \(x\le\frac{1}{2}\)

7 tháng 7 2017

a) Giá trị của x để biểu thức có nghĩa:

 \(\sqrt{\frac{-5}{-x-7}}\ne0\Leftrightarrow\frac{-5}{-x-7}\ne0\Leftrightarrow-x-7\ne0\Leftrightarrow x\ne-7\) 

b) Giá trị của x để biểu thức có nghĩa:

\(\sqrt{x^2+2x+3}\ne0\Leftrightarrow x^2+2x+1\ne-2\Leftrightarrow\left(x+1\right)^2\ne-2\Leftrightarrow x+1\ne-\sqrt{2}\Leftrightarrow x\ne-\sqrt{2}-1\)

            Đề kiểm tra 1 tiết Đại số 9 chương 1 – Đề số 1Bài 1 (2.5 điểm)1) Nêu điều kiện để √a có nghĩa ? \(\sqrt{a}\) có nghĩa (0.5)2) Áp dụng: Tìm x để các căn thức sau có nghĩa: ( 2 )a) \(\sqrt{2x+6}\)b) \(\sqrt{\frac{-2}{2x-3}}\)Bài 2: ( 3 điểm ): Rút gọn biểu thức:a) \(\sqrt{\left(1+2\sqrt{3}\right)^2}-5\sqrt{3}\)(1)b) \(3\sqrt{2}+4\sqrt{8}-\sqrt{18}\)(1)c) \(\frac{1}{3+\sqrt{2}}+\frac{1}{3-\sqrt{2}}\)(1)Bài...
Đọc tiếp

            Đề kiểm tra 1 tiết Đại số 9 chương 1 – Đề số 1

Bài 1 (2.5 điểm)

1) Nêu điều kiện để √a có nghĩa ? \(\sqrt{a}\) có nghĩa (0.5)

2) Áp dụng: Tìm x để các căn thức sau có nghĩa: ( 2 )

a) \(\sqrt{2x+6}\)

b) \(\sqrt{\frac{-2}{2x-3}}\)

Bài 2: ( 3 điểm ): Rút gọn biểu thức:

a) \(\sqrt{\left(1+2\sqrt{3}\right)^2}-5\sqrt{3}\)(1)

b) \(3\sqrt{2}+4\sqrt{8}-\sqrt{18}\)(1)

c) \(\frac{1}{3+\sqrt{2}}+\frac{1}{3-\sqrt{2}}\)(1)

Bài 3 ( 4.5 điểm ) Cho biểu thức

\(P=\left(\frac{1}{\sqrt{x}-1}-\frac{1}{\sqrt{x}}\right):\left(\frac{\sqrt{x}+1}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}-1}\right)\)   

 đkxđ : \(x>0;x\ne4;x\ne1\)

a/ Rút gọn P. (1.5)

b/ Với giá trị  nào của x thì P có giá trị bằng 1/4  (1.5)

c/ Tính giá trị của P tại  x = 4 + 2√3 (1)

d/ Tìm số nguyên x để biểu thức P có giá trị là số nguyên ? (0.5)

 

4
19 tháng 10 2017

Bài 1:

1. \(\sqrt{a}\)có nghĩa <=> \(a\ge0\)

2. a) \(\sqrt{2x+6}\)có nghĩa <=> \(2x+6\ge0\)

\(\Leftrightarrow2x\ge-6\)

\(x\ge-3\)

b)\(\sqrt{\frac{-2}{2x-3}}\) có nghĩa \(\Leftrightarrow\frac{-2}{2x-3}\ge0\)

có -2 < 0

\(\Leftrightarrow\hept{\begin{cases}2x-3\ne0\\2x-3\le0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2x\ne3\\2x\le3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\ne\frac{3}{2}\\x\le\frac{3}{2}\end{cases}}\)

\(\Rightarrow x< \frac{3}{2}\)

19 tháng 10 2017

Bài 4 :

\(P=\left(\frac{\sqrt{x}}{\left(\sqrt{x}-1\right).\sqrt{x}}-\frac{\sqrt{x}-1}{\sqrt{x}.\left(\sqrt{x}-1\right)}\right):\left(\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\right)\)

\(\Leftrightarrow\left(\frac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}.\left(\sqrt{x}-1\right)}\right):\left(\frac{\left(x-1\right)-\left(x-4\right)}{\left(\sqrt{x}-2\right).\left(\sqrt{x}-1\right)}\right)\)

\(\Leftrightarrow\left(\frac{1}{\sqrt{x}.\left(\sqrt{x}-1\right)}\right):\left(\frac{3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\right)\)

\(\Leftrightarrow\left(\frac{1}{\sqrt{x}.\left(\sqrt{x}-1\right)}\right).\left(\frac{\left(\sqrt{x}-2\right).\left(\sqrt{x}-1\right)}{3}\right)\)

\(\Leftrightarrow\frac{\sqrt{x}-2}{3\sqrt{x}}\) \(\left(ĐKXĐ:x>0;x\ne4;x\ne1\right)\)

b) \(P=\frac{1}{4}\)

\(\Leftrightarrow\frac{\sqrt{x}-2}{3\sqrt{x}}=\frac{1}{4}\)

\(\Leftrightarrow4\sqrt{x}-8=3\sqrt{x}\)

\(\Leftrightarrow4\sqrt{x}-3\sqrt{x}=8\)

\(\Leftrightarrow\sqrt{x}=8\)

\(\Leftrightarrow x=64\left(TMĐXĐ\right)\)

Vậy khi \(P=\frac{1}{4}\) thì x=64

Căn thức có nghĩa \(\Leftrightarrow x^2-3\ge0\Rightarrow\sqrt{3}\le x\le-\sqrt{3}\)

\(\Leftrightarrow x^2-2x-3\ge0\)

\(\Leftrightarrow x\left(x+2\right)\ge0\)

\(\Leftrightarrow x^2+5x+6\ge0\)

3 tháng 7 2017

Bạn tìm điều kiện để cái trong căn lớn hơn bằng 0 la ok luôn mà