Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,
\(y' = 6x - 4 \Rightarrow y'' = 6\)
Tại \({x_0} = - 2 \Rightarrow y''( - 2) = 6\)
b,
\(\begin{array}{l}y' = \frac{2}{{\left( {2x + 1} \right)\ln 3}}\\ \Rightarrow y'' = \left( {2.\frac{1}{{\left( {\left( {2x + 1} \right)\ln 3} \right)}}} \right)' = - 2.\frac{{\left( {\left( {2x + 1} \right)\ln 3} \right)'}}{{{{\left( {\left( {2x + 1} \right)\ln 3} \right)}^2}}}\\ = - 2\frac{{2\ln 3}}{{{{\left( {\left( {2x + 1} \right)\ln 3} \right)}^2}}} = \frac{{ - 4\ln 3}}{{{{\left( {\left( {2x + 1} \right)\ln 3} \right)}^2}}}\end{array}\)
Tại \({x_0} = 3 \Rightarrow y''(3) = \frac{{ - 4\ln 3}}{{{{\left( {\left( {2.3 + 1} \right)\ln 3} \right)}^2}}} = \frac{{ - 4\ln 3}}{{{{\left( {7\ln 3} \right)}^2}}} = \frac{{ - 4}}{{49\ln 3}}\)
c, \(y' = 4{e^{4x + 3}} \Rightarrow y'' = 16{e^{4x + 3}}\)
Tại \({x_0} = 1 \Rightarrow y''(1) = 16.{e^{4.1 + 3}} = 16.{e^7}\)
d,
\(y' = 2\cos \left( {2x + \frac{\pi }{3}} \right) \Rightarrow y'' = - 4\sin \left( {2x + \frac{\pi }{3}} \right)\)
Tại \({x_0} = \frac{\pi }{6} \Rightarrow y''\left( {\frac{\pi }{6}} \right) = - 4\sin \left( {2.\frac{\pi }{6} + \frac{\pi }{3}} \right) = - 2\sqrt 3 \)
e,
\(y' = - 3.\sin \left( {3x - \frac{\pi }{6}} \right) \Rightarrow y'' = - 9.\cos \left( {3x - \frac{\pi }{6}} \right)\)
Tại \({x_0} = 0 \Rightarrow y''(0) = - 9.\cos \left( {3.0 - \frac{\pi }{6}} \right) = \frac{{ - 9\sqrt 3 }}{2}\)
a: \(y'=\left(sin3x\right)'+\left(sin^2x\right)'=3\cdot cos3x+sin\left(x+pi\right)\)
b: \(y'=\left(log_2\left(2x+1\right)\right)'+\left(3^{-2x+1}\right)'\)
\(=\dfrac{2}{\left(2n+1\right)\cdot ln2}-2\cdot3^{-2x+1}\cdot ln3\)
a) \(y' = {\left( {{x^2} - x} \right)^\prime }{.2^x} + \left( {{x^2} - x} \right).{\left( {{2^x}} \right)^\prime } = \left( {2{\rm{x}} - 1} \right){.2^x} + \left( {{x^2} - x} \right){.2^x}.\ln 2\).
b) \(y' = {\left( {{x^2}} \right)^\prime }.{\log _3}x + {x^2}.{\left( {{{\log }_3}x} \right)^\prime } = 2{\rm{x}}.{\log _3}x + {x^2}.\frac{1}{{x\ln 3}} = 2{\rm{x}}.{\log _3}x + \frac{x}{{\ln 3}}\).
c) Đặt \(u = 3{\rm{x}} + 1\) thì \(y = {e^u}\). Ta có: \(u{'_x} = {\left( {3{\rm{x}} + 1} \right)^\prime } = 3\) và \(y{'_u} = {\left( {{e^u}} \right)^\prime } = {e^u}\).
Suy ra \(y{'_x} = y{'_u}.u{'_x} = {e^u}.3 = 3{{\rm{e}}^{3{\rm{x}} + 1}}\).
Vậy \(y' = 3{{\rm{e}}^{3{\rm{x}} + 1}}\).
\(a,y'=8x^3-9x^2+10x\\ \Rightarrow y''=24x^2-18x+10\\ b,y'=\dfrac{2}{\left(3-x\right)^2}\\ \Rightarrow y''=\dfrac{4}{\left(3-x\right)^3}\)
\(c,y'=2cos2xcosx-sin2xsinx\\ \Rightarrow y''=-5sin\left(2x\right)cos\left(x\right)-4cos\left(2x\right)sin\left(x\right)\\ d,y'=-2e^{-2x+3}\\ \Rightarrow y''=4e^{-2x+3}\)
a, Điều kiện: \(2^x\ne3\Rightarrow x\ne log_23\)
Vậy D = R \ \(log_23\)
b, Điều kiện: \(25-5^x\ge0\Rightarrow5^x\le5^2\Rightarrow x\le2\)
Vậy D = \((-\infty;2]\)
c, Điều kiện: \(\left\{{}\begin{matrix}x>0\\lnx\ne1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x>0\\x\ne e\end{matrix}\right.\)
Vậy D = \(\left(0;+\infty\right)\backslash\left\{e\right\}\)
d, Điều kiện: \(\left\{{}\begin{matrix}x>0\\1-log_3x\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x>0\\log_3x\le1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x>0\\x\le3\end{matrix}\right.\Rightarrow0< x\le3\)
Vậy D = \((0;3]\)
tham khảo:
a)y′=2\(^{3x-x^2}\).ln2.(3−2x)
b) y′\(\dfrac{4}{ln3}\).\(\dfrac{1}{4x+1}\).4=\(\dfrac{4}{\left(4x+1\right)ln3}\)
tham khảo:
a)\(y'\left(x\right)=5\left(\dfrac{2x-1}{x+2}\right)^4.\dfrac{\left(x+2\right)\left(2\right)-\left(2x-1\right).1}{\left(x+2\right)^2}\)
\(=\dfrac{10\left(2x-1\right)\left(x+2\right)^3}{\left(x+2\right)^4}=\dfrac{20x-50}{\left(x+2\right)^4}\)
b)\(y'\left(x\right)=\dfrac{2\left(x^2+1\right)-2x\left(2x\right)}{\left(x^2+1\right)^2}\)\(=\dfrac{2\left(1-x^2\right)}{\left(x^2+1\right)^2}\)
c)\(y'\left(x\right)=e^x.2sinxcosx+e^xsin^2x.2cosx\)
\(=2e^xsinx\left(cosx+sinxcosx\right)\)
\(=2e^xsinxcos^2x\)
d)\(y'\left(x\right)=\dfrac{1}{x\sqrt{x}}.\left(+\dfrac{1}{2\sqrt{x}}\right)\)
\(=\dfrac{1}{\sqrt{x}\left(2\sqrt{x}+\sqrt{x}+2\right)}\)
\(=\dfrac{1}{\sqrt{x}\left(3\sqrt{x}+2\right)}\)
Lời giải:
a) y' = = , y" = = = .
b) y' = = ;
y" = = = .
c) y' = ; y" = = = .
d) y' = 2cosx.(cosx)' = 2cosx.(-sinx) = - 2sinx.cosx = -sin2x,
y" = -(2x)'.cos2x = -2cos2x.
\(a,y'=\left(\dfrac{1}{2x+3}\right)'=-\dfrac{2}{\left(2x+3\right)^2}\\ \Rightarrow y''=\dfrac{2\cdot\left[\left(2x+3\right)^2\right]'}{\left(2x+3\right)^4}=\dfrac{8}{\left(2x+3\right)^3}\\ b,y'=\left(log_3x\right)'=\dfrac{1}{xln3}\\ \Rightarrow y''=-\dfrac{1}{x^2ln3}\\ c,y'=\left(2^x\right)'=2^x\cdot ln2\\ \Rightarrow y''=2^x\cdot\left(ln2\right)^2\)