K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2015

do có \(1.f\left(x\right)-1.f\left(x-1\right)=...\) nên hệ số của \(x^4\) có thể là bất kì số nào khác 0. Ta lấy là số 1 cho đơn giản.

Đặt \(f\left(x\right)=x^4+ax^3+bx^2+cx+d\)

Thay x = -1,0,1,2 (hoặc 4 số bất kì) vào \(f\left(x\right)-f\left(x-1\right)=x^3\), ta được hệ 4 ẩn, 4 pt bậc nhất, từ đó giải ra a, b, c, d.

Thay vô Sn.

20 tháng 12 2015

phantuananh mấy tháng nữa chắc mk cũng chả cần nữa rồi

20 tháng 12 2015

Gọi F(x) = \(ax^4+bx^3+cx^2+dx+e\)

=> F(x-1) = \(a\left(x-1\right)^4+b\left(x-1\right)^3+c\left(x-1\right)^2+d\left(x-1\right)+e\)

F(x) - f(x-1) = x^3 . Rút gọn sau đó cho hệ số bằng nhau 

\(Sn=1+2^3+3^3+4^3+...+n^3=\left(1+2+...+n\right)^2=\left(\frac{n\left(n-1\right)}{2}\right)^2\)

Dễ dàng cm bằng pp quy nạp 

Với n = 2011  => S2011 =.....

15 tháng 6 2015

1) \(\Delta=m^2-4\left(m-1\right)=m^2-4m+4=\left(m-2\right)^2\ge0\)với mọi m=> pt luôn có nghiệm với mọi m

a) áp dụng hệ thức vi ét ta có: \(x1+x2=-m\)\(x1.x2=m-1\)

 \(B=x1^2+x2^2-4\left(x1+x2\right)=\left(x1+x2\right)^2-2x1x2-4\left(x1+x2\right)=m^2-2\left(m-1\right)-4\left(-m\right)=m^2+2m-2\)

\(=\left(m^2+2m+1\right)-3=\left(m+1\right)^2-3\ge-3\Rightarrow MinB=-3\Leftrightarrow m=-1\)

2) \(2x^2+2x+3x+3=0\Leftrightarrow\left(x+1\right)\left(2x+3\right)=0\Rightarrow\)x1=-1 và x2=-3/2

tổng 2 nghiệm \(x1^2+1+x2^2+1=1^2+1+\left(-\frac{3}{2}\right)^2+1=\frac{21}{4}\)

tích 2 nghiệm \(=\left(1^2+1\right)\left(\frac{3}{2}^2+1\right)=\frac{13}{2}\)=> PT cần tìm: \(x^2-\frac{21}{4}x+\frac{13}{2}=0\)

 

6 tháng 7 2020

a) Giải phương trình hoành độ giao điểm với a=2 ta đc

\(x^2-2x-2=0\)

\(x_1=1+\sqrt{3};x_2=1-\sqrt{3}\)

với x=...

15 tháng 6 2015

1, thay m=-2 vào giải chắc bạn làm đc nếu k liên hệ mình giải cho

b, giải sử pt có 2 nghiệm pb, áp dụng hệ thức vi ét ta có: \(x1+x2=2m+2\)\(x1.x2=m-2\Leftrightarrow2.x1.x2=2m-4\)

=> \(x1+x2-2.x1.x2=2m+2-2m+4=6\)=> hệ thức liên hệ k phụ thuộc vào m

2) \(\Delta=4\left(m-3\right)^2+4>0\) với mọi m=> pt luôn có 2 nghiệm pb

áp dụng hệ thức vi ét ta có: \(x1+x2=2m-6\)\(x1.x2=-1\)

câu này bạn xem có sai đề k. loại bài toán áp dụng hệ thức vi ét này k bao giờ có đề là x1-x2 đâu nha

sửa đề rồi liên hệ để mình làm tiếp nha

 

8 tháng 6 2016

PT có 2 no dương \(\Leftrightarrow\hept{\begin{cases}\Delta\ge0\\x1.x2>0\\x1+x2>0\end{cases}}\) .... tự giải đoạn này nhé bạn
sau đó viet thay vào Q giải bình thường 

6 tháng 5 2018

(P) y = x2

(d) y = 2x + m2 + 1

a) Phương trình hoành độ giao điểm:

\(x^2=2x+m^2+1\) (1)

\(\Leftrightarrow x^2-2x-m^2-1=0\)

Nhận xét: \(ac=1\times\left(-m^2-1\right)=-\left(m^2+1\right)\le-1< 0,\forall m\in R\)

⇒ (1) có 2 nghiệm với mọi m

⇒ (P) luôn cắt (d) tại 2 điểm phân biệt A và B.

b)

\(\odot\) Theo định lí Viète, ta có: \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=-m^2-1\end{matrix}\right.\)

\(\odot\) \(T=x_1\left(10m+y_2\right)+x_2\left(10m+y_1\right)+1968\)

\(=10m\left(x_1+x_2\right)+x_1\times x_2^2+x_2\times x_1^2+1968\)

\(=20m+x_1x_2\left(x_2+x_1\right)+1968\)

\(=20m-2\left(m^2+1\right)+1968=-2m^2+20m+1966\)

\(=-2\left(m-5\right)^2+2016\le2016\)

Dấu "=" xảy ra khi \(m-5=0\Leftrightarrow m=5\)

6 tháng 5 2018

Mình chưa hiểu phần dưới đây lắm

x1(10m+y2)+x2(10m+y1)+1968

=10m(x1+x2)+x1 . x22 +x2.x12+1968