K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
2 tháng 5 2017
1. A+(x2-4xy2+2xz-3y2) =0
=> A = -(x2-4xy2+2xz-3y2)
=> A = -x2+4xy2-2xz+3y2
Vậy A=-x2+4xy2-2xz+3y2
16 tháng 5 2022
a: \(A=-x^2+4xy^2-2xz+3y^2\)
b: Theo đề, ta có: \(B+4x^2y+5y^2-3xz+z^2=5y^2+z^2\)
nên \(B=-4x^2y+3xz\)
a) A+\(\left(x^2-4xy^2+2xz-3y^2\right)\)=0
=> A=0-\(\left(x^2-4xy^2+2xz-3y^2\right)\)
=>A=\(-x^2+4xy^2-2xz+3xy^2\)
b)B+\(\left(5x^2-2xy\right)=6x^2+9xy-y^2\)
=>B=\(6x^2+9xy-y^2-\left(5x^2-2xy\right)\)
=>B=\(6x^2+9xy-y^2-5x^2+2xy\)
=>B=\(\left(6x^2-5x^2\right)+\left(9xy+2xy\right)-y^2\)
=>B=\(x^2+11xy-y^2\)
c)ta có:
B+(\(4x^2y+5y^2-3xz+z^2\))
thay B=\(x^2+11xy-y^2\) vào biểu thức trên ta được:
\(x^2+11xy-y^2\) + (\(4x^2y+5y^2-3xz+z^2\))
= \(x^2+11xy-y^2+4x^2y+5y^2-3xz+z^2\)
=\(\left(5y^2-y^2\right)+x^2+11xy-y^2+4x^2y+5y^2-3xz+z^2\)
=\(4y^2+x^2+11xy-y^2+4x^2y+5y^2\)
đúng chưa bạn
a) A + (x\(^2\) - 4xy\(^2\) + 2xz - 3y\(^2\) ) = 0
(=) A = -x\(^2\) +4xy\(^2\) - 2xz + 3y\(^2\)
b) B + (5x\(^2\) - 2xy) = 6x\(^2\) + 9xy - y\(^2\)
(=) B = 6x\(^2\) + 9xy - y\(^2\) - 5x\(^2\) + 2xy
(=) B = x\(^2\) + 11xy - y\(^2\)
c) Đa thức không chứa biến x là 5 ( có thể thay đổi )
(=) B + (4x\(^2\)y + 5y\(^2\) - 3xz + z\(^2\)) = 5
(=) B = 5 - 4x\(^2\)y - 5y\(^2\) + 3xz - z\(^2\)