Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3B=3^1+3^2+3^3+.....+3^119+3^120
3B-B=(3^1+3^2+3^3+.....+3^119+3^120)-(1+3^1+3^2+3^3+.....+3^119)
2B=3^120-1
B=3^120-1/2
\(B=1+3^1+3^2+...+3^{118}+3^{119}\)
\(3B=3+3^2+3^3+..+3^{120}\)
\(3B-B=\left(3+3^2+...+3^{120}\right)-\left(1+3+3^2+...+3^{119}\right)\)
\(2B=1+3^{120}\)
(2x+1)(y-5)=12
Vì x,y \(\in N\)
=> 2x+1;y-5 \(\in N\)
=> 2x+1, y-5 \(\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
Vì 2x+1 là số lẻ => \(2x+1\in\left\{\pm1;\pm3\right\}\)
Xét bảng
2x+1 | 1 | -1 | 3 | -3 |
y-5 | 12 | -12 | 4 | -4 |
x | 0 | -1(ko tm) | 1 | -2( ko tm) |
y | 17 | 4 | 9 | 1 |
Vậy các cắp (x,y) tm là (0;17), (1;9)
Gọi UCLN(x + 1,x - 3) = d
=> x + 1 chia hết cho d
x - 3 chia hết cho d
=> x + 1 - x + 3 chia hết cho d
=> 4 chia hết cho d
=> d thuộc Ư(4)
=> d thuộc {1,2,4}
Để x + 1/x - 3 là phân số tối giản thì d phải khác 1 và một trong hai số n + 1 và n - 3 phải không chia hết cho 2 (Vì không chia hết cho hai thì sẽ không chia hết cho 4)
x - 3 ko chia hết cho 2
=> x - 3 khác 2k
=> x khác 2k + 3 ( k thuộc Z)
Vậy với X khác 2k + 3 thì x + 1.x - 3 là phân số tối giản
\(\left(2x+1\right)\cdot\left(y-5\right)=12\)
<=>\(x=\frac{17-y}{2y-10}\)
thay x vào phương trình
=>\(\left(\frac{17-y+y-5}{y-5}\right)\cdot\left(y-5\right)=12\)
<=>\(\frac{12}{y-5}\cdot\left(y-5\right)=12\)
<=>\(12=12\)(Luôn đúng khi và chỉ khi y khác 5 )\(y\ne5,y\inℝ\)
giả sử thay y=1 ta có
=>\(2x=\frac{12}{1-5}-1\)
<=>\(2x=-4\)
=>\(x=-2\)
Vậy \(x=-2\)và \(y=1\)
A = 2.4.6.8.12 - 40
Vì 2.4.6.8.12 chia hết cho 6 và 40 không chia hết cho 6 nên 2.4.6.8.12 - 40 không chia hết cho 6.
Vì 2.4.6.8.12 chia hết cho 8 và 40 chia hết cho 8 nên 2.4.6.8.12 - 40 chia hết cho 6.
Vì 2.4.6.8.12 chia hết cho 20 và 40 chia hết cho 20 nên 2.4.6.8.12 - 40 chia hết cho 6.
6:
A = 2.4.6.8.10.12 - 40
2.4.6.8.10.12 chia hết cho 6 vì có thừa số 6, nhưng khi trừ cho 40 ( số ko chia hết cho 6 ) thì sẽ ko thể chia hết cho 6 nữa.
8:
2.4.6.8.10.12 chia hết cho 8 vì có thừa số 8, nhưng khi trừ cho 40 ( số ko chia hết cho 8 ) thì cũng sẽ ko thể chia hết cho 8 nữa.
20:
A ko có thừa số là 20 nhưng khi ta lấy thừa số 10 nhân với thừa số 2 thì sẽ ra thừa số 20, khi trừ cho 40 ( số chia hết cho 20 ) thì A vẫn chia hết cho 20.
Vậy A chia hết cho 20 và không chia hết cho 6,8.
a) 35 chia hết cho x => x thuộc Ư(35)={ 1;-1;5;-5;7;-7;35;-35}
=> x thuộc { 1;-1;5;-5;7;-7;35;-35}
đ) x+16 chia hết cho x+1 => (x+15+1 ) chia hết cho x+1
= > (x+1) chia hết cho (x+1) VÀ (x+5) chia hết cho (x+1)
=> (x+1) thuộc Ư(15) và x+1 phải lớn hơn hoặc = 1
Ư(15 ) = {1;3;5;15 }
bạn nêu ra từng th nha : vd như :
x+1=1=>x=0
tự làm nha , tk mk đi
Điều kiện : 0 ≤ x , y ≤ 9
Vì \(\overline{2x3y}\) ⋮ 2 nên :
y ⋮ 2 (1) . Mà \(\overline{2x3y}\) ⋮ 5 ⇒ y ∈ { 0 ; 5 }(2)
Từ (1) và (2)⇒ y = 0 .Lại có : \(\overline{2x3y}\) : 9 dư 1
⇒ ( 2 + x + 3 + y ) : 9 dư 1 ⇔ ( 5 + x ) : 9 dư 1
Theo điều kiện của đề bài ⇒ x = 5
Vậy số cần tìm là 2530
5,
Ta có :n2 + n + 6 = n(n + 1 ) + 6
Ta có : n( n +1 ) là tích của 2 số tự nhiên liên tiếp
=> n(n+1) không có c/s tận cùng là 9 và 4
=> n(n+1)+6 không có c/s tận cùng là 0 hoặc 5 ( vì đề bài yêu cầu là không chia hết cho 5 )
Vậy n2+ n+ 6 không chia hết cho 5 với mọi n thuộc N
6,
Ta có: 012,137,262,387,512,637,762,887 là các số có tận cùng chia cho 125 dư 12
Từ các số trên, ta chọn ra số có tận cùng chia cho 8 dư 3
Số có tận cùng là 387 thì chia cho 8 sẽ dư 3
=> các số có tận cùng là 387
199080 chia hế 72
x=8
y=0