K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

 Những số có tận cùng là 0, 2, 4, 6, 8 thì chia hết cho 2.  2. Những số có tân cùng là 0 hoặc 5 thì chia hết cho 5. 3. Các số có tổng các chữ số chia hết cho 3 thì chia hết cho 3. 4. Các số có tổng các chữ số chia hết cho 9 thì chia hết cho 9. 5. Các số có hai chữ số tận cùng lập thành số chia hết cho 4 thì chia hết cho 4. 6. Các số có hai chữ số tận cùng lập thành số chia hết cho 25 thì chia...
Đọc tiếp

 Những số có tận cùng là 0, 2, 4, 6, 8 thì chia hết cho 2.  2. Những số có tân cùng là 0 hoặc 5 thì chia hết cho 5. 3. Các số có tổng các chữ số chia hết cho 3 thì chia hết cho 3. 4. Các số có tổng các chữ số chia hết cho 9 thì chia hết cho 9. 5. Các số có hai chữ số tận cùng lập thành số chia hết cho 4 thì chia hết cho 4. 6. Các số có hai chữ số tận cùng lập thành số chia hết cho 25 thì chia hết cho 25. 7. Các số có 3 chữ số tận cùng lập thành số chia hết cho 8 thì chia hết cho 8. 8. Các số có 3 chữ số tận cùng lập thành số chia hết cho 125 thì chia hết cho 125. 9. a chia hết cho m, b cũng chia hết cho m (m > 0) thì tổng a + b và hiệu a - b (a > b) cũng chia hết cho m. 
   
II. Bài tập 
 1 324a4b đồng thời chia hết cho 2, cho 3 và cho 5 

a)632ab đồng thời chia hết cho 2, cho 3 và cho 5 

a) 33aab đồng thời chia hết cho 2, cho 5 và cho 9. 

a) 4a69b đồng thời chia hết cho 2, cho 5 và cho 9 

a) 4a69b đồng thời chia hết cho 2 và 9 

Hãy tìm các chữ số x, y sao cho 17x8y chia hết cho 5 và 9 
7 Tìm chữ số x, y để số 45x7y chia hết cho cả 2, 3, 5 và 9 

0
2 tháng 7 2017

Tìm số dư trong phép chia : 109 345:14

             109345=1093.115=(102Q(14))115

              nên 109345=1(mod14)

1 tháng 7 2017

(mk dùng kí hiệu  \(\overline{...6}\)  để chỉ số có tận cùng là 6 nha)

Ta có  \(2^{1992}=\left(2^4\right)^{498}=\left(\overline{...6}\right)^{498}=\overline{..6}\)

=>  \(3^{2^{1992}}=3^6=9\)  (mod 10).       (Dòng này mk dùng dấu "=" thay cho dấu đồng dư nha vì ko có dấu đồng dư)

Lại có  \(9^{1992}=\left(9^4\right)^{498}=\left(\overline{...1}\right)^{498}=\overline{...1}\)

=>  \(2^{9^{1992}}=2^1=2\)  (mod 10)   (dòng này cũng là dấu đồng dư)

Do đó chữ số tận cùng của  \(3^{2^{1992}}-2^{9^{1992}}\)  là  9 - 2 = 7