\(58^{33}\)

B = 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2015

2100=(24)25 = 1625 (Các số có chữ số tận cùng là 1,5,6,0 khi nâng lên lũy thừa bậc bất kì có CSTC ko thay đổi)

\(\Rightarrow\)CSTC của 2100 là 6

Ví dụ 1 câu rồi đấy.

Các số có CSTC là 4 và 9 khi nâng lên lũy thừa bậc lẻ ( như 2423 ) có CSTC ko thay đổi

Các số có CSTC là 2,4 và 8 khi nâng lên lũy thừa bậc 2k có CSTC = 6

Các số có CSTC là 3,7 và 9 khi nâng lên lũy thừa bậc 4k có CSTC = 1

6 tháng 10 2015

5726 và 726​ có cùng chữ số tận cùng

Ta co 726=(74)6 . 72=24016.49

Vi 24016 co chu so tan cung la 1

=> 24016.49 co tan cung la 9

=> C có tận cùng là 9

l-i-k-e mình nhé 

11 tháng 4 2018

67^33=67^32.67=(67^4)^8 .67=(....1).67=(..........7)

58^26=(58^4)^24.58^2=(........6).(............4)=(.......4)

129^35=129^34.129=(...1).129=(...9)

11 tháng 9 2018

4^3^10=4^30=(4^2)^15=..........6^15=...........6

2^2^5=2^10=(2^4)^2 . 2^2=...........6^2 . ...........4=.............4

2^3^4=2^12=(2^4)^3=.............6^3=...............6

3^3^3=3^9=(3^4)^2 . 3=..............1^2 . 3=..............3

9^9^9=9^81=(9^2)^80 . 9=..............1^80 . 9=.................9

4 tháng 4 2018

a) 571999= 57499.4+3= 57499.4.573(...1).(...3)(...3)

Vậy 571999 có tận cùng là 3.

b) 931999= 93499.4+3= 93499.4.933(....1).(....7)(....7)

Vậy 931999 có tận cùng là 7.

19 tháng 10 2017

A=2^100-1

suy ra A<2^100

19 tháng 10 2017

mk cần gấp lắm rồi

19 tháng 10 2017

\(A=1+2+2^2+...+2^{99}\)

\(2A=2+2^2+2^3+2^{100}\)

\(2A-A=\left(2+2^2+...+2^{100}\right)-\left(1+2+...+2^{99}\right)\)

\(A=2^{100}-1< 2^{100}\)

2 tháng 11 2019

Bài 1: Ta có: \(B=3+3^2+3^3+...+3^{2005}\)

    \(3B=3^2+3^3+3^4+...+3^{2006}\)

\(3A-A=3^{2006}-3\)

Hay \(2A=3^{2006}-3\)

+) Ta có: 2B+3=\(\left(3^{2006}-3\right)+3\)

\(\Rightarrow2B+3=3^{2006}\)

Vậy 2B+3 là lũy thừa của 3

b) Ta có: \(A=3+3^2+...+3^{100}\)

\(3A=3^2+3^3+...+3^{101}\)

\(3A-A=3^{101}-3\)

Hay \(2A=3^{101}-3\)

+) theo đề ra, ta có: \(2A+3=3^n\)

\(\Rightarrow\left(3^{101}-3\right)+3=3^{101}=3^n\)

\(\Rightarrow n=101\)

Mỏi tay wóa!!! Học tốt nha^^

 B1

Có B=3+32+...+32005

=>3B=32+33+...+32006

=>2B=3B-B=32006-3

=>2B+3=32006-3+3=32006

=>Đpcm

B2

Có A=3+32+..+3100

=>3A=32+33+...+3101

=>2A=3A-A=3101-3

=>2A+3=3101-3+3=3101=3n

=>n=101

vggysqfyge32wfbhu334xft799nbr45445fk0pnr5gtrgđsyhmjlkmk;kmffed

23 tháng 2 2020

vovyfsboiviuqgufgbfvoeu

23 tháng 11 2016

\(M=1+3+3^2+3^3+....+3^{47}+3^{48}+3^{49}\)

\(M=\left(1+3+3^2\right)+...+\left(3^{47}+3^{48}+3^{49}\right)\)

\(M=13\left(1+....+17\right)⋮13\left(\text{đ}pcm\right)\)