Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(a^3+b^3+3\text{a}b-1\)
= \(\left(a+b\right)^3-3ab\left(a+b\right)+3ab-1\)
\(=\left[\left(a+b\right)^3-1\right]-3ab\left(a+b-1\right)\)
\(=\left(a+b-1\right)\left[\left(a+b\right)^2+\left(a+b\right)+1-3ab\right]\)
\(=\left(a+b-1\right)\left(a^2+b^2-ab+a+b+1\right)\)
Xét: \(a^3+b^3+3\text{a}b-1\) là số nguyên tố với a; b là số nguyên dương
+) Th1: a + b - 1 = 1 và \(a^2+b^2-ab+a+b+1\) là số nguyên tố
<=> a + b = 2 và 7 - 3ab là số nguyên tố
Vì a; b nguyên dương nên a + b = 2 => a = b = 1 => 7 - 3ab = 7 - 3 = 4 không là số nguyên tố
=> Loại
+) Th2: \(a^2+b^2-ab+a+b+1\) = 1 và a + b - 1 là số nguyên tố
Ta có: \(a^2+b^2-ab+a+b+1=1\)
<=> \(a^2+\left(1-b\right)a+b^2+b=0\)
<=> \(a^2+2a\frac{\left(1-b\right)}{2}+\frac{\left(1-b\right)^2}{4}-\frac{1-2b+b^2}{4}+b^2+b=0\)
<=> \(\left(a+\frac{1-b}{2}\right)^2+\frac{3b^2+6b-1}{4}=0\)(1)
Với b nguyên dương ta có: \(b\ge1\Rightarrow\frac{3b^2+6b-1}{4}\ge2>0\)
=> (1) vô nghiệm
=> Loại
Vậy không tồn tại a; b nguyên dương
Với mọi a , b , c \(\in\)R ta luôn có :
\(a^2\)+ \(b^2\)+ \(c^2\)> hoặc = \(2bc+2ca-2ab\left(1\right)\)
Ta cần chứng minh ( 1 ) là bất đẳng thức đúng
\(\Leftrightarrow\)\(a^2\)+ \(b^2\)+ \(c^2\)+ 2ab - 2bc - 2ca > hoặc = 0
\(\Leftrightarrow\)\(\left(a+b-c\right)^2\) > hoặc = 0 ( 2 )
Bất đẳng thức ( 2 ) luôn đúng với mọi a ; b ; c mà các phép biến đổi trên tương ứng
Nên bất đẳng thức ( 1 ) được chứng minh
Xảy ra khi và chỉ khi a + b = c
Mà \(a^2\)+ \(b^2\)+ \(c^2\)= \(\frac{5}{3}\)( gt )
Mà \(\frac{5}{3}\)= \(1\frac{2}{3}\)< 2 ( 3 )
Từ ( 1 ) kết hợp với ( 3 ) ta có thể viết :
2bc + 2ca - 2ab < hoặc = \(a^2\)+ \(b^2\)+ \(c^2\)< 2
\(\Rightarrow\)2bc + 2ca - 2ab < 2
Vì a ; b ; c > 0 nên chia cả 2 vế của bđt cho 2abc
\(\frac{2bc+2ca-2ab}{2abc}< \frac{2}{2abc}\)
\(\Leftrightarrow\)\(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}< \frac{1}{abc}\)
Vậy với a ; b ; c là các số dương thỏa mãn điều kiện : \(a^2\)+ \(b^2\)+ \(c^2\)= \(\frac{5}{3}\)thì ta luôn chứng minh được :
\(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}< \frac{1}{abc}\)