Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{5}{6}=\frac{x-1}{x}\left(đk:x\ne0\right)\)
\(< =>5x=6\left(x-1\right)< =>5x=6x-6\)
\(< =>6x-5x=6< =>x=6\left(tmđk\right)\)
\(\frac{1}{2}=\frac{x+1}{3x}\left(đk:x\ne0\right)\)
\(< =>3x=2\left(x+1\right)< =>3x=2x+2\)
\(< =>3x-2x=2< =>x=2\left(tmđk\right)\)
\(\frac{3}{x+2}=\frac{5}{2x+1}\left(đk:x\ne-2;-\frac{1}{2}\right)\)
\(< =>3\left(2x+1\right)=5\left(x+2\right)< =>6x+3=5x+10\)
\(< =>6x-5x=10-3< =>x=7\left(tmđk\right)\)
\(\frac{5}{8x-2}=-\frac{4}{7-x}\left(đk:x\ne\frac{1}{4};7\right)\)
\(< =>\frac{5}{8x-2}=\frac{4}{x-7}< =>5\left(x-7\right)=4\left(8x-2\right)\)
\(< =>5x-35=32x-8< =>32x-5x=-35+8\)
\(< =>27x=-27< =>x=-1\)
\(\frac{4}{3}=\frac{2x-1}{3}< =>4.3=\left(2x-1\right).3\)
\(< =>12=6x-3< =>6x=12+3\)
\(< =>6x=15< =>x=\frac{15}{6}=\frac{5}{2}\)
\(\frac{2x-1}{3}=\frac{3x+1}{4}< =>4\left(2x-1\right)=3\left(3x+1\right)\)
\(< =>8x-4=9x+3< =>9x-8x=-4-3\)
\(< =>9x-8x=-7< =>x=-7\)
\(\frac{4}{x+2}=\frac{7}{3x+1}\left(đk:x\ne-2;-\frac{1}{3}\right)\)
\(< =>4\left(3x+1\right)=7\left(x+2\right)< =>12x+4=7x+14\)
\(< =>12x-7x=14-4< =>5x=10\)
\(< =>x=\frac{10}{5}=2\left(tmđk\right)\)
\(-\frac{3}{x+1}=\frac{4}{2-2x}\left(đk:x\ne-1;1\right)\)
\(< =>-3\left(2-2x\right)=4\left(x+1\right)< =>-6+6x=4x+4\)
\(< =>6x-4x=4+6< =>2x=10\)
\(< =>x=\frac{10}{2}=5\left(tmđk\right)\)
\(\frac{x+1}{3}=\frac{3}{x+1}\left(đk:x\ne-1\right)\)
\(< =>\left(x+1\right)\left(x+1\right)=3.3\)
\(< =>x^2+2x+1=9< =>x^2+2x+1-9=0\)
\(< =>x^2+2x-8=0< =>x^2-2x+4x-8=0\)
\(< =>x\left(x-2\right)+4\left(x-2\right)=0< =>\left(x+4\right)\left(x-2\right)=0\)
\(< =>\orbr{\begin{cases}x+4=0\\x-2=0\end{cases}< =>\orbr{\begin{cases}x=-4\\x=2\end{cases}}}\left(tmđk\right)\)
a: =>-2x=90/91
hay x=-45/91
b: =>2x=-7
hay x=-7/2
c: ->-3x=-12
hay x=4
1. \(6x^3-8=40\\ 6x^3=48\\ x^3=8\\ \Rightarrow x=2\)Vậy x = 2
2. \(4x^5+15=47\\ 4x^5=32\\ x^5=8\\ \Rightarrow x\in\varnothing\left(\text{vì }x\in N\right)\)Vậy x ∈ ∅
3. \(2x^3-4=12\\ 2x^3=16\\ x^3=8\\ \Rightarrow x=2\)Vậy x = 2
4. \(5x^3-5=0\\ 5x^3=5\\ x^3=1\\ \Rightarrow x=1\)Vậy x = 1
5. \(\left(x-5\right)^{2016}=\left(x-5\right)^{2018}\\ \Rightarrow\left[{}\begin{matrix}x-5=0\\x-5=1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=5\\x=6\end{matrix}\right.\)Vậy \(x\in\left\{5;6\right\}\)
6. \(\left(3x-2\right)^{20}=\left(3x-1\right)^{20}\\ \Rightarrow3x-2=3x-1\\ 3x-3x=2-1\\ 0=1\left(\text{vô lí}\right)\)Vậy x ∈ ∅
7. \(\left(3x-1\right)^{10}=\left(3x-1\right)^{20}\\ \left(3x-1\right)^{10}=\left[\left(3x-1\right)^2\right]^{10}\\ \Rightarrow\left(3x-1\right)^2=3x-1\\ \left(3x-1\right)^2-\left(3x-1\right)=0\\ \left(3x-1\right)\left[\left(3x-1\right)-1\right]=0\\ \left(3x-1\right)\left(3x-2\right)=0\\ \Rightarrow\left[{}\begin{matrix}3x-1=0\\3x-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}3x=1\\3x=2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{1}{3}\left(\text{loại vì }x\in N\right)\\x=\frac{2}{3}\left(\text{loại vì }x\in N\right)\end{matrix}\right.\)Vậy x ∈ ∅
8. \(\left(2x-1\right)^{50}=2x-1\\ \left(2x-1\right)^{50}-\left(2x-1\right)=0\\ \left(2x-1\right)\left[\left(2x-1\right)^{49}-1\right]=0\\ \Rightarrow\left[{}\begin{matrix}2x-1=0\\\left(2x-1\right)^{49}=1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=1\\2x-1=1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\frac{1}{2}\left(\text{loại vì }x\in N\right)\\x=1\left(t/m\right)\end{matrix}\right.\)Vậy x = 1
9. \(\left(\frac{x}{3}-5\right)^{2000}=\left(\frac{x}{3}-5\right)^{2008}\\ \left(\frac{x}{3}-5\right)^{2008}-\left(\frac{x}{3}-5\right)^{2000}=0\\ \left(\frac{x}{3}-5\right)^{2000}\left[\left(\frac{x}{3}-5\right)^8-1\right]=0\\ \Rightarrow\left[{}\begin{matrix}\left(\frac{x}{3}-5\right)^{2000}=0\\\left(\frac{x}{3}-5\right)^8=1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}\frac{x}{3}-5=0\\\frac{x}{3}-5=1\\\frac{x}{3}-5=-1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}\frac{x}{3}=5\\\frac{x}{3}=6\\\frac{x}{3}=4\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=5\cdot3=15\\x=6\cdot3=18\\x=4\cdot3=12\end{matrix}\right.\)Vậy \(x\in\left\{15;18;12\right\}\)
\(1.6x^3-8=40\\ \Leftrightarrow6x^3=48\\ \Leftrightarrow x^3=8\Leftrightarrow x^3=2^3=\left(-2\right)^3\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
Vậy \(x\in\left\{2;-2\right\}\)
\(2.4x^3+15=47\) (T nghĩ đề là mũ 3)
\(\Leftrightarrow4x^3=32\Leftrightarrow x^3=8=2^3=\left(-2\right)^3\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
Vậy \(x\in\left\{2;-2\right\}\)
Câu 3, 4 tương tự nhé.
\(\frac{1}{7}=\frac{8}{-x}\)
\(\Rightarrow-x.1=8.7\)
\(\Rightarrow-x=56\)
\(\Rightarrow x=-56\)
De a, la so nguyen thi -3 phai chia het cho x-1
=>x-1 thuộc ước của -3={1,-1,3,-3
Ta có bảng giá trị:
x-1 1 -1 3 -3
x 2 0 4 -2
Vay x thuoc {2,0,4,-2} thi a, la so nguyen
b,Đề -4/2x-1 là số nguyên thì -4 phải chia hết cho 2x-1 =>2x-1 thuộc ước của -4={1,-1,2,-2,4,-4}
Ta có bảng giá trị:
2x-1 1 -1 2 -2 4 -4
x 1 0 / / / /
(/ là k có giá trị nào)
=>x thuộc {1,0} thì b, là số nguyên
c,Đề c, là số nguyên =>3x+7 chia het cho x-1
=>3x +7 -(x-1) chia het cho x-1
=>3x+7-3(x-1) chia het cho x-1
=>3x +7-3x +3 chia het cho x-1
=>10 chia het cho x-1
=>x-1 thuộc ước của 10={1,-1,2,-2,5,-5,10,-10)
Ta có bảng giá trị:
x-1 1 -1 2 -2 5 -5 10 -10
x 2 0 3 -1 6 -4 11 -9
Vậy x thuộc {2,0,3,-1,6,-4,11,-9} thì c, là số nguyên
d, bạn tự làm nha
Bn kiểm tra lại kq nhé
+) A = \(\frac{3}{x-1}\)
=> x-1 \(\in\) Ư(3) = {-1,-3,1,3}
Ta có bảng :
x-1 | -1 | -3 | 1 | 3 |
x | 0 (loại) | -2 | 2 | 4 |
Vậy x = { -2,2,4 }
+) Bài B đề chưa rõ
+) C = \(\frac{11}{3x-1}\)
=> 3x-1 \(\in\) Ư(11) = { -1,-11,1,11 }
Ta có bảng :
3x-1 | -1 | -11 | 1 | 11 |
x | 0 (loại) | \(\frac{-10}{3}\) (loại) | \(\frac{2}{3}\) (loại) | 4 |
Vậy x = 4
+) M = \(\frac{x+2}{x-1}\)
Ta có: \(\frac{x+2}{x-1}=\frac{x-1+3}{x-1}=\frac{x-1}{x-1}+\frac{3}{x-1}=1+\frac{3}{x-1}\)
=> x-1 \(\in\) Ư(3) = {-1,-3,1,3}
Tiếp theo như bài A mình đã làm
E = \(\frac{x+7}{x+2}=\frac{x+2+5}{x+2}=\frac{x+2}{x+2}+\frac{5}{x+2}=1+\frac{5}{x+2}\)
=> x+2 \(\in\) Ư(5) = {-1,-5,1,5 }
Ta có bảng :
x+2 | -1 | -5 | 1 | 5 |
x | -3 | -7 | -1 | 3 |
Vậy x = { -7,-3,-1,3 }
a/ \(2x+\frac{1}{7}=\frac{1}{3}\)
=> \(2x=\frac{1}{3}-\frac{1}{7}=\frac{7}{21}-\frac{3}{21}\)
=> \(2x=\frac{4}{21}\)
=> \(x=\frac{4}{21}:2=\frac{4}{21}.\frac{1}{2}=\frac{2}{21}\)
b/ \(3\left(x-\frac{1}{2}\right)=\frac{4}{9}\)
=> \(x-\frac{1}{2}=\frac{4}{9}:3=\frac{4}{9}.\frac{1}{3}\)
=> \(x-\frac{1}{2}=\frac{4}{27}\)
=> \(x=\frac{4}{27}+\frac{1}{2}=\frac{8}{54}+\frac{27}{54}=\frac{35}{54}\)
c/ \(\left(x-5\right)^2+4=68\)
=> \(\left(x-5\right)^2=68-4=64\)
=> \(\left[{}\begin{matrix}x-5=8\\x-5=-8\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=8+5=13\\x=-8+5=-3\end{matrix}\right.\)
d/ \(\left(\left|x\right|-\frac{1}{2}\right)\left(2x+\frac{3}{2}\right)=0\)
=> \(\left[{}\begin{matrix}\left|x\right|-\frac{1}{2}=0\\2x+\frac{3}{2}=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}\left|x\right|=0+\frac{1}{2}=\frac{1}{2}\\2x=0-\frac{3}{2}=-\frac{3}{2}\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}\left[{}\begin{matrix}x=\frac{1}{2}\\x=-\frac{1}{2}\end{matrix}\right.\\x=-\frac{3}{2}:2=-\frac{3}{2}.\frac{1}{2}=-\frac{3}{4}\end{matrix}\right.\)
e) \(5x+2=3x+8\)
=> \(5x-3x=8-2=6\)
=> \(2x=6\)
=> \(x=6:2=3\)
f/ \(26-\left(5-2x\right)=27\)
=> \(5-2x=26-27=-1\)
=> \(2x=5-\left(-1\right)=5+1=6\)
=> \(x=6:2=3\)
g/ \(\left(4x-8\right)-\left(2x-6\right)=4\)
=> \(4x-8-2x+6=4\)
=> \(\left(4x-2x\right)+\left(-8+6\right)=4\)
=> \(2x+-2=4\)
=> \(2x=4+2=6\)
=> \(x=6:2=3\)
h/ \(\left(x+3\right)^3:3-1=-10\)
=> \(\left(x+3\right)^3:3=-10+1=-9\)
=> \(\left(x+3\right)^3=-9.3=-27\)
=> \(x+3=-3\)
=> \(x=-3-3=-6\)