Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2/
$n\vdots 65, n\vdots 125$
$\Rightarrow n=BC(65,125)$
$\Rightarrow n\vdots BCNN(65,125)$
$\Rightarrow n\vdots 1625$
$\Rightarrow n=1625k$ với $k$ tự nhiên.
$n=1625k=5^3.13.k$
Nếu $k=1$ thì $n$ có $(3+1)(1+1)=8$ ước (loại)
Nếu $k>1$ thì $n$ có ít nhất $(3+1)(1+1)(1+1)=16$ ước nguyên tố.
$n$ có đúng 16 ước nguyên tố khi mà $k$ là 1 số nguyên tố.
Vậy $n=1625p$ với $p$ là số nguyên tố.
d 10^n+72^n -1
=10^n -1+72n
=(10-1) [10^(n-1)+10^(n-2)+ .....................+10+1]+72n
=9[10^(n-1)+10^(n-2)+..........................-9n+81n
Theo bài ra , ta có :
\(ƯCLN\left(m+n\right)=1\)( Vì m và n là 2 số nguyên tố cùng nhau )
\(\RightarrowƯCLN\left(m^2+n^2\right)=1\)
\(\Rightarrow m=n=1\)
và m2 + n2 chia hết cho m x n
Nên m = n = 1
Chúc bạn học tốt =))