Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có vì x, y là các số tự nhiên nên
\(\hept{\begin{cases}3xy\ge0\left(1\right)\\2x\ge0\left(2\right)\\2y\ge0\left(3\right)\end{cases}}\)
Từ đó ta có
\(3xy+2x+2y\ge0\)
Dấu = xảy ra khi \(x=y=0\)
3xy + 2x + 2y = 0
=> x.(3y + 2) = -2y
=> \(x=\frac{-2y}{3y+2}\)
Do \(x\in N\Rightarrow3y+2\inƯ\left(-2y\right)\)
Mà 3y + 2 > -2y do y ϵ N => -2y = 0
=> y = 0; x = 0
Vậy x = y = 0
a/ Do 4x5y chia cho 2, 5, 9 đều dư 1
=> 4x5y-1 sẽ chia hết cho 2, 5 và 9
Để chia hết cho 2 và 5 => y-1=0 => y=1
Khi đó số cần tìm có dạng: 4x51 . Tổng các số hạng là: 4+x+5+1-1=9+x
Để chia hết cho 9 => 9+x phải chia hết cho 9 (0=<x<10)
=> x=0 và x=9
Số cần tìm là: 4051 và 4951
3xy + 2x + 2y = 0
9xy + 6x + 6y = 0
3x (3y+2) + 2(3y+2)=4
(3x+2)(3y+2)=4
Vậy x = 0 và y = 0