Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(n^2+2n-6\right)⋮\left(n-4\right)\)
\(\Rightarrow n^2-4n+6n-24+18⋮\left(n-4\right)\)
\(\Rightarrow n\left(n-4\right)+6\left(n-4\right)+18⋮\left(n-4\right)\Rightarrow18⋮\left(n-4\right)\)
\(\Rightarrow n-4\in\left\{\pm1;\pm2;\pm3;\pm6;\pm9;\pm18\right\}\)
Mà n là STN nên tìm được
\(n\in\left\{1;2;3;5;6;7;10;13;22\right\}\)
\(a,n+6⋮n\)
\(\Rightarrow6⋮n\)
\(\Rightarrow n\inƯ\left(6\right)\)
\(\Rightarrow n\in\left\{-1;1;-2;2;-3;3;-6;6\right\}\)
\(b,n+9⋮n+1\)
\(\Rightarrow n+1+8⋮n+1\)
\(\Rightarrow8⋮n+1\)
\(\Rightarrow n+1\inƯ\left(8\right)\)
\(\Rightarrow n+1\in\left\{-1;1;-2;2;-4;4;-8;8\right\}\)
\(\Rightarrow n\in\left\{-2;0;-3;1;-5;3;-9;7\right\}\)
\(c,n-5⋮n+1\)
\(\Rightarrow n+1-6⋮n+1\)
\(\Rightarrow6⋮n+1\)
\(\Rightarrow n+1\inƯ\left(6\right)\)
\(\Rightarrow n+1\in\left\{-1;1;-2;2;-3;3;-6;6\right\}\)
\(\Rightarrow n\in\left\{-2;0;-3;0;-4;2;-7;5\right\}\)
\(d,2n+7⋮n-2\)
\(\Rightarrow2n-4+11⋮n-2\)
\(\Rightarrow2\left(n-2\right)+11⋮n-2\)
\(\Rightarrow11⋮n-2\)
\(\Rightarrow n-2\inƯ\left(11\right)\)
\(\Rightarrow n-2\in\left\{-1;1;-11;11\right\}\)
\(\Rightarrow n\in\left\{1;3;-9;13\right\}\)
a) n + 11 ⋮ n - 1
b) 7n ⋮ n - 3
c) n2 + 2n + 6 ⋮ n + 4
d) n2 + n +1 ⋮ n + 1
a) Để n + 11 \(⋮\)n - 1
=> n - 1 + 12 \(⋮\)n - 1
Vì n - 1 \(⋮\)n - 1
=> 12 \(⋮\)n - 1
=> n - 1 \(\inƯ\left(12\right)\)
=> n - 1 \(\in\left\{1;2;3;4;6;12\right\}\)
=> n \(\in\left\{2;3;4;5;7;13\right\}\)
b) Để 7n \(⋮\)n - 3
=> 7n - 21 + 21 \(⋮\)n - 3
=> 7(n - 3) + 21 \(⋮\)n - 3
Vì 7(n - 3) \(⋮\)n - 3
=> 21 \(⋮\)n - 3
=> n - 3 \(\inƯ\left(21\right)\)
=> n - 3 \(\in\left\{1;3;7;21\right\}\)
=> n \(\in\left\{4;6;10;24\right\}\)
c) Để n2 + 2n + 6 \(⋮\)n + 4
=> (n2 + 8n + 16) - 6n - 10 \(⋮\)n + 4
=> (n2 + 4n) + (4n + 16) - 6n - 24 + 14 \(⋮\)n + 4
=> n(n + 4) + 4(n + 4) - 6(n + 4) + 14 \(⋮\)n + 4
=> n + 4(n + 4 - 6) + 14 \(⋮\)n + 4
=> (n + 4)(n - 2) + 14 \(⋮\)n + 4
Vì (n + 4)(n + 2) \(⋮\)n + 4
=> 14 \(⋮\)n + 4
=> n + 4 \(\inƯ\left(14\right)\)
=> n + 4 \(\in\left\{1;2;7;14\right\}\)
=> n \(\in\left\{-3;-2;3;10\right\}\)(Vì n là số tự nhiên)
Vậy n \(\in\left\{3;10\right\}\)
d) Để n2 + n + 1 \(⋮\)n + 1
=> n2 + 2n + 1 - n - 1 + 1 \(⋮\)n + 1
=> (n2 + n) + (n + 1) - (n + 1) + 1 \(⋮\)n + 1
=> n(n + 1) + 1 \(⋮\)n + 1
Vì n(n + 1) \(⋮\)n + 1
=> 1 \(⋮\)n + 1
=> n + 1 = 1
=> n = 0
Vậy n = 0
các phấn số trên là số nguyên thì tử phải chia hết cho mẫu
suy ra mẫu là ước của tử
các câu đều chung 1 dạng như vậy đó
tự làm tiếp nha tui đi ngủ đây
a) n+4/n
=n/n+4/n
=1+4/n
Để 1+4/n là số nguyên
=> 4/n là số nguyên và n là số tự nhiên
=> n là Ư(4) =1;2;4
b,c áp dụng tương tự câu a
d) thì khó hơn xíu mik giải hộ:
n/n-2 là số nguyên
=> D=n/n-2
=> 2D=2n/n-2
=> 2D=2n-4+4/n-2
=> 4/n-2 là số nguyên do 2n-4=2(n-2) chia hết cho n-2
=> n-2 là Ư(4)
Xong tự giải típ .
1.Tim các số tự nhiên n sao cho:
a) n+11\(⋮\)n-1
b) 7n \(⋮\)n-3
c) n2+2n+6 \(⋮\)n+4
d) n2+n+1 \(⋮\)n+1
a) \(n+11⋮\left(n-1\right)\)
\(\Rightarrow\left(n+11\right)-\left(n-1\right)⋮\left(n-1\right)\)
\(\Rightarrow12⋮n-1\)
Vì n \(\in\)N nên n - 1 \(\ge\)-1
\(\Rightarrow n-1=\left\{-1;1;2;3;4;6;12\right\}\)
\(\Rightarrow n=\left\{0;2;3;4;7;13\right\}\)
a) 3n + 5 \(⋮\)2n
\(\Leftrightarrow\)n + 5 \(⋮\)2n
\(\Leftrightarrow\)2(n + 5) \(⋮\)2n
\(\Leftrightarrow\)2n + 10 \(⋮\)2n
\(\Leftrightarrow\)10 \(⋮\)2n
\(\Leftrightarrow\)2n \(\in\)Ư(10) = {-1; 1; -2; 2; -5; 5; -10; 10}
\(\Leftrightarrow\)n \(\in\){1; 5}
b) 2n + 7 \(⋮\)3n + 1
\(\Leftrightarrow\)3( 2n + 7)\(⋮\)3n + 1
\(\Leftrightarrow\)6n + 21\(⋮\)3n + 1
\(\Leftrightarrow\)2(3n + 1) + 19 \(⋮\)3n + 1
\(\Leftrightarrow\)19 \(⋮\)3n +1
\(\Leftrightarrow\)3n + 1 \(\in\)Ư(19) = {-1; 1; -19; 19}
Tương tự với các câu còn lại
đáp án:
n2+2n−6⋮n+4n2+2n−6⋮n+4
→n2+4n−2n−6⋮n+4→n2+4n−2n−6⋮n+4
→n(n+4)−2n−6⋮n+4→n(n+4)−2n−6⋮n+4
Mà n(n+4)⋮n+4n(n+4)⋮n+4
→−2n−6⋮n+4→−2n−6⋮n+4
→−2n−8+2⋮n+4→−2n−8+2⋮n+4
→−2(n+4)+2⋮n+4→−2(n+4)+2⋮n+4
Mà −2(n+4)⋮n+4−2(n+4)⋮n+4
→2⋮n+4→2⋮n+4
→n+4∈Ư(2)=1;2→n+4∈Ư(2)=1;2
→n∈{−3;−2}→n∈{-3;-2}
Mà n∈Nn∈ℕ
→n∈∅