Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có vẻ khá lâu rùi ko có ai giải bài này.
1. \(\overline{ab}^2=\overline{abc}+c^2\le999+9^2=1080\)
\(\Leftrightarrow\overline{ab}\le31\) . Cũng có: \(\overline{ab}\ge10\) vì là số có 2 chữ số
\(\overline{ab}^2-10.\overline{ab}=c^2+c\)
Với \(\overline{ab}\ge16\) thì \(\overline{ab}^2-10\overline{ab}\ge96>90=9^2+9\ge c^2+c\) (ko t/m)
Vậy \(10\le\overline{ab}\le16\)
Thử từng trường hợp tìm được \(\overline{abc}=100;\overline{abc}=147\)
2. Dễ thấy \(32^2\le\overline{ab}^2=\overline{acdb}\le99^2\) do \(\overline{acdb}\) có 4 chữ số.
Ta chứng minh được với a nhận các giá trị từ 1 tới 8 thì:
\(\overline{ab}^2=100a^2+20ab+b^2\le100a^2+180a+81< 1000a< \overline{acdb}\)
(Thay lần lượt các giá trị vô là xong)
Do đó \(a=9\). Vì \(\overline{ab}^2\) có tận cùng là b nên b nhận các giá trị 0,1,5,6.
Thử từng trường hợp ta được \(\overline{ab}=95;\overline{ab}=96\)
Đặt A = \(\frac{ab}{a+b}=\frac{10a+b}{a+b}=1+\frac{9a}{a+b}=1+\frac{9}{\frac{a+b}{a}}=1+\frac{9}{1+\frac{b}{a}}\)
Để A đạt giá trị nhỏ nhất thì \(\frac{9}{1+\frac{b}{a}}\)nhỏ nhất \(\Rightarrow\)\(1+\frac{b}{a}\)lớn nhất \(\Rightarrow\frac{b}{a}\)lớn nhất \(\Rightarrow\)b lớn nhất , a nhỏ nhất
\(\Rightarrow\)b = 9 ; a = 1
Vậy \(A_{min}=\frac{19}{1+9}=1,9\)
ta thấy ab2=(a+b)3 nên ab là lập phương 1 số ,a+b là bình phương 1 số
ta có:a\(\supseteq\)9,b\(\supseteq\)9 nên a+b\(\supseteq\)18
nên a+b có thể là 4 ,9, 16
xét a+b=4 thì không có giá trị a,b nào phù hợp để ab là số lập phương
xét a+b=9 thid a,b có giá trị phù hợp là 2,7 thì được ab=27 (thỏa mãn)
xét a+b=16 thì cũng không có giá trị nào phù hợp
vậy a=2,b=7 thì thỏa mãn
Vì \(\left(a+b\right)^3\) là SCP
=> Đặt \(a+b=x^2\)
=> \(\overline{ab}^2=x^6\)
<=> \(\overline{ab}=x^3\)
Vì \(10\le\overline{ab}\le99\) => \(x^2\in\left\{27;64\right\}\Rightarrow x\in\left\{3;4\right\}\)
Nếu x = 3 => \(\overline{ab}=27\)
<=> \(\overline{ab}^2=27^2=9^3=\left(2+7\right)^3\left(tm\right)\)
Nếu x = 4 => \(\overline{ab}=64\)
<=> \(\overline{ab}^2=64^2=16^3\ne\left(6+4\right)^3\) => loại
Vậy SCT là 27, xem bài mình nè, chiều đi học nhé:))
vì abcd,ab,ac là số nguyên tố nên là số lẻ hay b,c,d lẻ và khác 5. Ta có :
b2 = cd + b - c \(\Rightarrow\)b ( b - 1 ) = cd - c = 10c + d - c = 9c + d \(\ge\)10
\(\Rightarrow\)b \(\ge\)4 \(\Rightarrow\) b = 7 hoặc b = 9
+) b = 7 ta có : 9c + d = 42 \(\Rightarrow\)d \(⋮\)3 \(\Rightarrow\)d = 3 hoặc d = 9
Nếu d = 3 thì c = \(\frac{39}{9}\)( loại )
Nếu d = 9 thì c = \(\frac{33}{9}\)( loại )
+) b = 9 thì 9c + d = 72 \(\Rightarrow\)d = 9 ; c = 7
Mà a7 và a9 là số nguyên tố thì a = 1
Vậy abcd = 1979
pơ'ơ
142533
12245698