K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2020

Đề hình như sai rồi bạn ạ! Tui nghĩ vậy nè:

\(\left(2016a+13b-1\right).\left(2016^a+2016a+b\right)=2015\)

Ta có: \(2015\)là số lẻ nên: \(\left(2016a+13b-1\right)\left(2016^a+2016a+b\right)\) lẻ.

\(\Rightarrow\hept{\begin{cases}2016a+13b-1\\2016^a+2016a+b\end{cases}}lẻ\)

Nếu: \(a\ne\Rightarrow2016a\)chẵn \(\Rightarrow13b-1\)lẻ \(\Rightarrow13b\)chẵn.

Mà: \(13\)lẻ nên \(\Rightarrow b\) chẵn.

Lúc đó: \(2016^a+2016a+b\left(l\right)\)

\(\Rightarrow a\ne0\left(ktm\right)\)

Nếu: \(a=0\Rightarrow2016a+13b-1=13b-1\)l lẻ.

\(2016^a+2016a+b=b+1\)lẻ

\(\Rightarrow\left(13b-1\right)\left(b+1\right)=2015\)

Mà: \(b\in N\Rightarrow\left(13b-1\right),\left(b+1\right)\inƯ\left(2015\right)\)

Vì:\(13b-1\) không chia hết cho \(3\)và \(13b-1>b+1\)

\(\Rightarrow\hept{\begin{cases}13b-1=155\\b+1=13\end{cases}}\Rightarrow\hept{\begin{cases}b=12\\b=12\end{cases}}\Rightarrow b=12\left(tm\right)\)

Vậy \(\hept{\begin{cases}a=0\\b=12\end{cases}}\)

23 tháng 5 2016

mik moi hoc lop 6

30 tháng 3 2017

ahihi

7 tháng 12 2016

a=0,b=12

7 tháng 1 2017

a=0,b=12

8 tháng 3 2018

ta có 2015 là số lẻ => (2016a+13b-1).(2016a+2016a+b)lẻ

=> \(\hept{\begin{cases}2016a+13b-1\\2016^a+2016a+b\end{cases}}\)lẻ 

Nếu a \(\ne0\)=>2016a chẵn =>13b-1 lẻ =>13b chẵn

mà 13 lẻ =>b chẵn

lúc đó 2016a+2016a +b chẵn(loại vì 2016a+2016+b phải lẻ)

=> a\(\ne0\)ko thỏa mãn

Nếu a=0 => 2016a +13b-1=13b-1 lẻ

2016a+2016a +b =b+1 lẻ

=>(13b-1)(b+1)=2015

mà b\(\in N\)=> (13b-1),(b+1)\(\inƯ\left(2015\right)\)

Do 13b-1 ko chia  hết cho 3 , 13b-1>b+1

=>\(\hept{\begin{cases}13b-1=155\\b+1=13\end{cases}}\Rightarrow\hept{\begin{cases}b=12\\b=12\end{cases}}\Rightarrow b=12\)(thỏa mãn)

Vậy a=0,b=12

8 tháng 3 2018

ta có 2015 là số lẻ => (2016a+13b-1).(2016a+2016a+b)lẻ

=> \(\hept{\begin{cases}2016a+13b-1\\2016^a+2016a+b\end{cases}}\)lẻ 

Nếu a \(\ne0\)=>2016a chẵn =>13b-1 lẻ =>13b chẵn

mà 13 lẻ =>b chẵn

lúc đó 2016a+2016a +b chẵn(loại vì 2016a+2016+b phải lẻ)

=> a\(\ne0\)ko thỏa mãn

Nếu a=0 => 2016a +13b-1=13b-1 lẻ

2016a+2016a +b =b+1 lẻ

=>(13b-1)(b+1)=2015

mà b\(\in N\)=> (13b-1),(b+1)\(\inƯ\left(2015\right)\)

Do 13b-1 ko chia  hết cho 3 , 13b-1>b+1

=>\(\hept{\begin{cases}13b-1=155\\b+1=13\end{cases}}\Rightarrow\hept{\begin{cases}b=12\\b=12\end{cases}}\Rightarrow b=12\)(thỏa mãn)

Vậy a=0,b=12

6 tháng 12 2016

Đề bài sai rồi, phải bằng 215 chứ

7 tháng 12 2016

Mình làm ra a=0,b=12

8 tháng 3 2018

ta có 2015 là số lẻ => (2016a+13b-1).(2016a+2016a+b)lẻ

=> \(\hept{\begin{cases}2016a+13b-1\\2016^a+2016a+b\end{cases}}\)lẻ 

Nếu a \(\ne0\)=>2016a chẵn =>13b-1 lẻ =>13b chẵn

mà 13 lẻ =>b chẵn

lúc đó 2016a+2016a +b chẵn(loại vì 2016a+2016+b phải lẻ)

=> a\(\ne0\)ko thỏa mãn

Nếu a=0 => 2016a +13b-1=13b-1 lẻ

2016a+2016a +b =b+1 lẻ

=>(13b-1)(b+1)=2015

mà b\(\in N\)=> (13b-1),(b+1)\(\inƯ\left(2015\right)\)

Do 13b-1 ko chia  hết cho 3 , 13b-1>b+1

=>\(\hept{\begin{cases}13b-1=155\\b+1=13\end{cases}}\Rightarrow\hept{\begin{cases}b=12\\b=12\end{cases}}\Rightarrow b=12\)(thỏa mãn)

Vậy a=0,b=12