Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Ta có: a chia có 7 dư 3 => a - 3 chia hết cho 7
=> 4 (a - 3) chia hết cho 7 => 4a - 12 chia hết cho 7
=> 4a - 12 + 7 chia hết cho 7 => 4a - 5 chia hết cho 7 (1)
a chia cho 13 dư 11 => a - 11 chia hết cho 13
=> 4 (a - 11) chia hết cho 13 => 4a - 44 chia hết cho 13
=> 4a - 44 + 39 chia hết cho 13 => 4a - 5 chia hết cho 13 (2)
a chia cho 17 dư 14 => a - 14 chia hết cho 17
=> 4 ( a - 14) chia hết cho 17 => 4a - 56 chia hết cho 17
=> 4a - 56 + 51 chia hết cho 17 => 4a - 5 chia hết cho 17 (3)
Từ (1), (2) và (3) => 4a - 5 thuộc BC(7;13;17)
Mà a nhỏ nhất => 4a - 5 nhỏ nhất
=> 4a - 5 = BCNN(7;13;17) = 7 . 13 . 17 = 1547
=> 4a = 1552 => a= 388
2. Gọi ƯCLN(a,b) = d
=> a = d . m (ƯCLN(m,n) = 1)
b = d . n
Do a < b => m<n
Vì BCNN(a,b) . ƯCLN(a,b) = a . b
\(\Rightarrow BCNN\left(a,b\right)=\frac{a\cdot b}{ƯCLN\left(a,b\right)}=\frac{d\cdot m\cdot d\cdot n}{d}=m\cdot n\cdot d\)
Vì BCNN(a,b) + ƯCLN(a,b) = 19
=> m . n . d + d = 19
=> d . (m . n + 1) = 19
=> m . n + 1 thuộc Ư(19); \(m\cdot n+1\ge2\)
Ta có bảng sau:
d m . n +1 m . n m n a b 1 19 18 1 2 18 9 1 18 2 9
Vậy (a,b) = (2;9) ; (1 ; 18)
3.
Bài 1:
Tổng các chữ số là \(4^3=64\)
Nếu số cần tìm có 7 chữ số và các chữ số đều là 9 thì tổng mới là 7.9=63
=> số cần tìm phải là 8 chữ số và là 19999999
Bài 2: a=0; b=13
bạn có: a^3 + b^3 = (a + b)(a^2 - ab + b^2) = 28(a^2 - ab + b^2)
theo đề bài , bạn có: a + b = 28 >= 2√ab (bất đẳng thức AM-GM)
=> 28 >= 2√ab
hay 14 >= √ab => 196 >=ab hay -ab >= -196
đồng thời bạn có (a + b)^2 = 784
suy ra a^2 + 2ab + b^2 = 784
suy ra a^2 + 2ab + b^2 - 3ab = 784 - 3ab
hay a^2 -ab + b^2 >= 784 - 588
hay a^2 - ab + b^2 >= 196
suy ra bạn có P = a^3 + b^2 = (a+b)(a^2 - ab +b^2) = 28(a^2 - ab + b^2) >= 28.196 = 5488
=> min P = 5488 <=> a = b = 14
1. Ta có: A = 30 + 31 + 32 + ... + 3100
3A = 3.(1 + 3 + 32 + ... + 3100)
3A = 3 + 32 + 33 + ... + 3101
3A - A = (3 + 32 + 33 + ... + 3101) - (1 + 3 + 32 + ... + 3100)
2A = 3101 - 1
A = \(\frac{3^{101}-1}{2}\)
Vậy ...
Baif1 :
đặt \(A=3^0+3^1+3^2+...+3^{100}\)
\(\Rightarrow3A=3+3^2+3^3+...+3^{101}\)
\(\Rightarrow3A-A=\left(3+3^2+...+3^{101}\right)-\left(1+3+...+3^{100}\right)\)
\(\Rightarrow2A=3^{101}-1\)
\(\Rightarrow A=\frac{3^{101}-1}{2}\)
b. Trong 100 số tn khác 0 đầu tiên tổng các số chẵn hơn tổng các số lẻ 50.
nếu a:8 dư 5 và b:8 dư 3 thì (a+b):8 dư 0 và (a-b):8 dư 2
Nếu a7 = b8
Thì a = b
Mà a và b nhỏ nhất và lớn hơn 1
=> ko có a và b tồn tại
nếu a7=b8
thì a=b
mà a và b nhỏ nhất và lớn hơn 1
=> ko có a và b tồn tại