Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(-2011-\left(200-2011\right)\)
\(=-2011-200+2011\)
\(=\left(-2011+2011\right)-200\)
\(=0-200\)
\(=-200\)
b) \(\left(-2\right)^2-\left(-2000\right)^0+\left(-1\right)^{2018}-\left|-20\right|\)
\(=4-1+1-20\)
\(=4-20\)
\(=-16\)
Bài 1 :
\(a)-2011-(200-2011)\)
\(=-2011-(200+2011)\)
\(=(-2011+2011)-200\)
\(=0-200=-200\)
\(b)(-2)^2-(-2000)^0+(-1)^{2018}-\left|-20\right|\)
\(=4-1+1-20\)
\(=4-20=-16\)
\(c)23\cdot18-23\cdot26+(-23)\cdot2\)
\(=23\cdot(18-26)+-(23\cdot2)\)
\(=23\cdot(-8)+(-46)\)
\(=-230\)
Bài 2 : Tìm số nguyên x biết :
\(a)3x-(-5)=20\)
\(\Rightarrow3x+5=20\)
\(\Rightarrow3x=20-5\)
\(\Rightarrow3x=15\Rightarrow x=5\)
\(b)3(x+2)=-4+(-2)^3\)
\(\Rightarrow3(x+2)=-4+(-8)\)
\(\Rightarrow3(x+2)=-12\)
\(\Rightarrow x+2=-12\div3\)
\(\Rightarrow x+2=-4\)
Tự tìm x câu b, và câu c,
Bài 3 tự làm
a) ta có: 3x+2 chia hết cho (x-1)
(x-1) chia hết cho (x-1)
=> 3(x-1) chia hết cho (x-1)
Hay (3x-3) chia hết cho (x-1)
=> [(3x+2)-(3x-3)] chia hết cho (x-1)
Hay 5 chia hết cho (x-1)
=> (x-1) thuộc Ư(5)={1;-1;5;-5}
Mà x thuộc Z
=> ta có bảng sau:
x-1 | 1 | -1 | 5 | -5 |
X | 2 | 0 | 6 | -4 |
Vậy x={2;0;6;-4}
Nhớ thay dấu bằng thành dấu thuộc nhé vì mình ko có dấu thuộc!!!
c, \(n-1⋮3n+2\Leftrightarrow3n-3⋮3n+2\)
\(\Leftrightarrow3n+2-5⋮3n+2\Leftrightarrow-5⋮3n+2\)
hay \(3n+2\inƯ\left(-5\right)=\left\{\pm1;\pm5\right\}\)
3n + 2 | 1 | -1 | 5 | -5 |
3n | -1 | -3 | 3 | -7 |
n | -1/3 | -1 | 1 | -7/3 |
Vì n thuộc N => n = { 1 ; -1 }
b, hay : \(n-2\inƯ\left(-11\right)=\left\{\pm1;\pm11\right\}\)
n - 2 | 1 | -1 | 11 | -11 |
n | 3 | 1 | 13 | -9 |
a.Vì x,y là số nguyên dương
=> 1003 và 2y cũng là số nguyên dương
Vì 2008 là số chẵn
mà 2y cũng là số chẵn
=> 1003x là số chẵn
Vì 1003 là số lẻ
mà 1003x là số chẵn
=> x là số chẵn
=> x chia hết cho 2 (đpcm)
Vậy ta có đpcm
Bài 2:Tìm số nguyên x
a,x-2=-6+17
=> x-2= 11
=> x = 11 + 2
=> x = 13
b,x+2=-9
=> x = -9 - 2
=> x = -11
Hai bài toán rất hay và lạ! Xin cảm ơn bạn Tuấn Minh.
Và mình không hiểu người post cái bài dài dài kia (bạn Thành - sau mà đổi tên là không biết tên gì nốt) nói gì luôn. @@@.
1./ Tìm các số nguyên dương x;y;z sao cho: \(\hept{\begin{cases}x+3=2^y\left(1\right)\\3x+1=4^z\left(2\right)\end{cases}}\)
- Ta thấy y=0; 1 không phải là nghiệm của bài toán.
- Với y =2 thì x=1; z=1 là 1 nghiệm của bài toán.
- Với y>=3 thì:
- Từ (2) suy ra: \(3x=4^z-1=\left(4-1\right)\left(4^{z-1}+4^{z-2}+...+4^2+4+1\right)\)
\(\Leftrightarrow x=4^{z-1}+4^{z-2}+...+4^2+4+1\)
- Thay vào (1) ta có: \(\left(1\right)\Leftrightarrow4^{z-1}+4^{z-2}+...+4^2+4+1+3=2^y\)
\(\Leftrightarrow4^{z-1}+4^{z-2}+...+4^2+4+4=2^y\)
\(\Leftrightarrow8\cdot2\cdot4^{z-3}+8\cdot2\cdot4^{z-4}+...+8\cdot2\cdot4+8\cdot2+8=2^y\)
\(\Leftrightarrow8\cdot\left(2\cdot4^{z-3}+2\cdot4^{z-4}+...+2\cdot4+2+1\right)=8\cdot2^{y-3}\)
\(\Leftrightarrow\left(2\cdot4^{z-3}+2\cdot4^{z-4}+...+2\cdot4+2+1\right)=2^{y-3}\)
Ta thấy vế trái lẻ nên đạt được dấu bằng chỉ khi y=3; khi đó x=5 và z=2.
- Vậy bài toán có 2 bộ nghiệm nguyên là: \(\hept{\begin{cases}x=1;y=2;z=1\\x=5;y=3;z=2\end{cases}}\)
bạn có biết ko mà hỏi người ta
§Sun♤ACE