K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
23 tháng 6 2019

Lời giải:

Nếu $n$ là số nguyên dương chẵn thì $n^4+4^n$ là số nguyên dương chẵn và lớn hơn $2$ nên không thể là số nguyên tố (loại)

Nếu $n$ là số nguyên dương lẻ:

\(n^4+4^n=(n^2)^2+(2^n)^2=(n^2+2^n)^2-2.n^2.2^n\)

\(=(n^2+2^n)^2-(n.2^{\frac{n+1}{2}})^2=(n^2+2^n-n.2^{\frac{n+1}{2}})(n^2+2^n+n.2^{\frac{n+1}{2}})\)

Để $n^4+4^n$ là số nguyên tố thì nó chỉ có đúng 2 ước nguyên tố (1 và chính nó). Do đó 1 trong 2 thừa số \(n^2+2^n-n.2^{\frac{n+1}{2}};n^2+2^n+n.2^{\frac{n+1}{2}}\) phải bằng $1$.

\(n^2+2^n-n.2^{\frac{n+1}{2}}< n^2+2^n+n.2^{\frac{n+1}{2}}\) nên \(n^2+2^n-n.2^{\frac{n+1}{2}}=1\)

\(\Leftrightarrow 2n^2+2^{n+1}-2n.2^{\frac{n+1}{2}}=2\)

\(\Leftrightarrow (n-2^{\frac{n+1}{2}})^2+n^2=2\). Với $n\geq 3$ thì hiển nhiên vô lý nên $n< 3$. Mà $n$ lẻ nên $n=1$. Thử lại thấy đúng

Vậy $n=1$

23 tháng 6 2019

Thầy ơi cho em hỏi tí nhá, có chỗ em không hiểu.

tại sao \((n^2+2n)^2-2.n^2.2^n\)\(=(n^2+2^n)^2-(n.2\frac{n+1}{2})^2\).

Thầy giải thich giùm em với ạ. Em cảm ơn thầy.

24 tháng 7 2016

a ) Với p = 3 , p là số nguyên tố và \(p^2+8=3^2+8=17\)cũng là số nguyên tố => p = 3 thỏa mãn đề bài 

Xét với p > 3 , ta biểu diễn : 

\(p^2+8=\left(p^2-1\right)+9=\left(p-1\right)\left(p+1\right)+9\)

Xét ba số nguyên liên tiếp : p - 1 , p , p + 1 ắt sẽ có một số chia hết cho 3.

Vì p là số nguyên tố , p > 3 nên p không chia hết cho 3. Vậy một trong hai số p - 1 , p + 1 chia hết cho 3. Suy ra tích (p - 1)(p + 1) chia hết cho 3. Lại có 9 chia hết cho 3

\(\Rightarrow p^2+8\)chia hết cho 3. (vô lí vì  \(p^2+8\)là số nguyên tố lớn hơn 3) 

Vậy p = 3 \(\Rightarrow p^2+2=3^2+2=11\)là số nguyên tố (đpcm)

b) Với p = 3 thì \(8p^2+1\)là số nguyên tố.

Với p là số nguyên tố, p > 3 : 

Ta có : \(8p^2+1=8\left(p^2-1\right)+9=8\left(p-1\right)\left(p+1\right)+9\)

Xét ba số nguyên liên tiếp : p - 1 , p , p + 1 , ắt sẽ tìm được một số chia hết cho 3

Vì p là số nguyên tố, p > 3 , nên p không chia hết cho 3. Vậy một trong hai số p - 1 , p + 1 chia hết cho 3 

Suy ra tích (p - 1)(p + 1) chia hết cho 3 . Lại có 9 chia hết cho 3

=> 8p2 + 1 chia hết cho 3 (vô lí vì 8p2 + 1 là số nguyên tố lớn hơn 3)

Vậy p = 3 . Suy ra 2p + 1 = 7 là số nguyên tố. (đpcm)

21 tháng 2 2017

Ta có:

A=\(12n^2-5n-25=\left(4n+5\right)\left(3n-5\right)\)

do \(n\in N\)=> 4n+5>3n-5

Do A là số nguyên tố nên: \(\hept{\begin{cases}3n-5=1\\4n+5=p\end{cases},p\in P}\)

Từ pt 1: => n=2

thay vào pt 2 được 4.2+5=13 nguyên tố

Vậy n=2

AH
Akai Haruma
Giáo viên
16 tháng 10 2021

Lời giải:

$A=n^3-n^2-n-2=(n-2)(n^2+n+1)$

Để $A$ là số nguyên tố thì 1 trong 2 thừa số $n-2, n^2+n+1$ có giá trị bằng $1$ và số còn lại là số nguyên tố

Mà $n^2+n+1> n-2$ nên:

$n-2=1$

$\Rightarrow n=3$

Thay $n=3$ vô ta thấy $A=13$ là snt (thỏa mãn)

18 tháng 7 2015

Ước nguyên nhỏ nhất là \(-\left(215^2+314^2\right)\)

Ước nguyên lớn nhất là \(\left(215^2+314^2\right)\)

18 tháng 3 2020

cái này mik chịu, mik mới có lớp 7

19 tháng 3 2020

1. Ta có \(\left(b-a\right)\left(b+a\right)=p^2\)

Mà b+a>b-a ; p là số nguyên tố 

=> \(\hept{\begin{cases}b+a=p^2\\b-a=1\end{cases}}\)

=> \(\hept{\begin{cases}b=\frac{p^2+1}{2}\\a=\frac{p^2-1}{2}\end{cases}}\)

Nhận xét :+Số chính phương chia 8 luôn dư 0 hoặc 1 hoặc 4

Mà p là số nguyên tố 

=> \(p^2\)chia 8 dư 1

=> \(\frac{p^2-1}{2}⋮4\)=> \(a⋮4\)(1)

+Số chính phương chia 3 luôn dư 0 hoặc 1

Mà p là số nguyên tố lớn hơn 3

=> \(p^2\)chia 3 dư 1

=> \(\frac{p^2-1}{2}⋮3\)=> \(a⋮3\)(2)

Từ (1);(2)=> \(a⋮12\)

Ta có \(2\left(p+a+1\right)=2\left(p+\frac{p^2-1}{2}+1\right)=p^2+1+2p=\left(p+1\right)^2\)là số chính phương(ĐPCM)

5 tháng 10 2016

a) - Do p là số nguyên tố nên p là số tự nhiên.

*) Xét p=3k+1 => \(p^2+8=\left(3k+1\right)^2+8=9k^2+6k+9⋮3\) (hợp số)

*) Xét p=3k+2 => \(p^2+8=\left(3k+2\right)^2+8=9k^2+12k+12⋮3\) (hợp số)

*) Xét p=3k => k=1 do p là số nguyên tố => \(p^2+8=9+8=17\) (t/m)

Ta có: \(p^2+2=11\). Mà 11 là số nguyên tố => điều phải chứng minh.

b) (Làm tương tự bài trên)

 - Do p là số nguyên tố => p là số tự nhiên.

*) Xét p=3k+1 => \(8p^2+1=8\left(3k+1\right)^2+1=8\left(9k^2+6k+1\right)+1=3k.8\left(3k+2\right)+\left(8+1\right)⋮3\)(hợp số)

*) Xét p=3k+2 => \(8p^2+1=8\left(3k+2\right)^2+1=8\left(9k^2+12k+4\right)+1=3k.8\left(3k+4\right)+\left(32+1\right)⋮3\) (hợp số)

*) Xét p=3k => k=1 Do p là số nguyên tố => \(8p^2+1=8.9+1=73\)(t/m)

Ta có : \(2p+1=7\). Mà 7 là số nguyên tố => Điều phải chứng minh.

30 tháng 9 2016

làm ơn giải hộ mình nhanh lên