K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(2^m-2^n=256\)

\(\Leftrightarrow2^n\left(2^{m-n}-1\right)=256\)(1)

Ta có: \(2^m-2^n=256\)

\(\Leftrightarrow2^m>2^n\)

\(\Leftrightarrow m>n\)

(1) suy ra \(2^{m-n}-1\) là số lẻ

\(\Leftrightarrow2^{m-n}-1=1\)

\(\Leftrightarrow m-n=1\)

\(\Leftrightarrow2^n=256\)

hay n=8

hay m=1+n=1+8=9

Vậy: (m,n)=(9;8)

4 tháng 8 2021

Bạn Nguyễn Lê Phước Thịnh ơi? Nhưng mik vẫn ko hiểu tại sao \(2^{m-n}-1\)là số lẻ và m>n lại suy ra được \(2^{m-n}-1=1\)?

20 tháng 9 2015

m = 9 ; n = 8         

7 tháng 11 2015

\(2^m-2^n=256=2^8=>2^n\left(2^{m-n}-1\right)=2^8\left(1\right)\)

vì m khác n ,nên ta có:

+)nếu m-n=1 thì từ (1) ta có 2^n(2-1)=2^8

=>n=8;m=9

+)nếu m-n>2 thì 2^m-n -1 là 1 số lẻ lớn hơn 1 ,do đó vế trái của (1) chứa thừa số nguyên tố lẻ khi phân tích ra thừa số nguyên tố,còn vế phải của (1) chỉ chứa thừa số nguyên tố 2.Mâu thuẫn

Vậy n=8;m=9 là đáp số duy nhất

28 tháng 7 2015

Vì kết quả là số nguyên dương nên m > n > 0.

Đặt m - n = d

Ta có

\(2^m-2^n=256\)

\(2^n.\left(2^d-1\right)=2^8\)

\(2^n.\left(2^d-1\right)=2^8.1\)

\(2^n.\left(2^d-1\right)=2^8.\left(2^1-1\right)\)

Do đó n = 8 và d = 1 => m = 9

Vậy m = 9 và n = 8

28 tháng 7 2015

Giải thích thêm bài Đinh tuấn Việt: do m; n nguyên dương và m > n nên d \(\ge\) 1 

=> 2d - 1 là số lẻ mà 256  = 2

=> 2n .(2d - 1) = 28. 1 => ....

4 tháng 10 2015

^m-2^n=2^8 
Chia cả 2 vế cho 2 mũ 8. 
2^(m-8)- 2^(n-8)=1 
+giả sử m<=8, ta có VT<=1-2^(n-8)<1 
Suy ra m>8. Suy ra 2^(m-8) thuộc tập số tự nhiên và chia hết cho 2 
+giả sử n<8, ta có 2^(n-8) kô thuộc tập số tự nhiên. Suy ra VT kô thuộc tập số tự nhiên.Suy ra VT<>1 
do đó n>=8 
Với n>8,m>8 suy ra VT chia hết cho 2. suy ra VT<=>1 
Với n=8, VT=2^(m-8)-1=1. tương đương với m=9. 
Vậy m=9, n=8

25 tháng 7 2016

2m - 2n = 256

=> 2n.(2m-n - 1) = 256

Vì 2m-n - 1 chia 2 dư 1; 256 = 28 => 2n = 28 và 2m-n - 1 = 1

=> n = 8; 2m-n = 21

=> m - n = 1 => m = 1 + 8 = 9

Vậy m = 9; n = 8

25 tháng 7 2016

2m - 2n = 256

=> 2n.(2m-n - 1) = 256

Vì 2m-n - 1 chia 2 dư 1; 256 = 28 => 2n = 28 và 2m-n - 1 = 1

=> n = 8; 2m-n = 21

=> m - n = 1 => m = 1 + 8 = 9

Vậy m = 9; n = 8

2m-2n=256

=>2n(2m-n-1)=256

2m-2n=256=>2m>2n

=>m>n

=>2m-n-1 là số lẻ

=>2m-n-1=1

=>2n=256

=>n=8

=>2m=256+256=512=29

=>m=9

Vậy m=9;n=8

1 tháng 10 2015

Vì 2m - 2n = 256 > 0 nên m > n

Đặt m - n = d (d > 0)

Ta có :

\(2^m-2^n=2^n.\left(2^d-1\right)=256=2^8.1\)

=> 2n = 28 và 2d - 1 = 1

=> n = 8 và d = 1

=> m = 1 + 8 = 9

Kết luận m = 9 và n = 8

10 tháng 9 2020

Ta có : 2m - 2n = 256 

Đặt m = n + k (Vì 2m > 2n) (k > 0 ; k \(\inℕ\))

Khi đó 2n.2k - 2n = 256

=> 2n(2k - 1) = 256

Vì k> 0 => 2k > 0 => 2k - 1 > 0 <=> k > 1

Mà 2k chẵn với k > 0

=> 2k - 1 lẻ với k > 1 (1)

Vì 2n(2- 1) chẵn => 2k - 1 chẵn hoặc 2k - 1 = 1

mà xét vớ (1) ta chỉ nhận được 2k - 1 = 1

=> k = 1

=> n = 9

=> m = 10

Vậy n = 9 ; m = 10

10 tháng 9 2020

\(2^m-2^n=256=2^8\)---> Chia 2 vế cho 2n

\(\Leftrightarrow2^{m-n}-1=2^{8-n}\)

\(\Leftrightarrow2^{m-n}-2^{8-n}=1\)

\(\Leftrightarrow2^{8-n}\left(2^{m-8}-1\right)=1\)---> Vì các lũy thừa với số mũ tự nhiên của 2 không thể bé hơn 1 nên pt chỉ có nghiệm khi:

\(\hept{\begin{cases}2^{8-n}=1\\2^{m-8}-1=1\end{cases}\Leftrightarrow\hept{\begin{cases}2^{8-n}=2^0\\2^{m-8}=2^1\end{cases}\Leftrightarrow}\hept{\begin{cases}8-n=0\\m-8=1\end{cases}\Leftrightarrow}\hept{\begin{cases}n=8\\m=9\end{cases}}}\)

15 tháng 8 2017

2^m-2^n=2^8
Chia cả 2 vế cho 2 mũ 8.
2^(m-8)- 2^(n-8)=1
+giả sử m<=8, ta có VT<=1-2^(n-8)<1
Suy ra m>8. Suy ra 2^(m-8) thuộc tập số tự nhiên và chia hết cho 2
+giả sử n<8, ta có 2^(n-8) kô thuộc tập số tự nhiên. Suy ra VT kô thuộc tập số tự nhiên.Suy ra VT<>1
do đó n>=8
Với n>8,m>8 suy ra VT chia hết cho 2. suy ra VT<>1
Với n=8, VT=2^(m-8)-1=1. tương đương với m=9.
Vậy m=9, n=8

15 tháng 8 2017

Ta có \(2^m-2^n=256\)

\(\Rightarrow2^m-2^n=2^8\)

\(\Rightarrow m-n=8\)

Thay \(m=n+8\)

Khi đó ta có \(2^{n+8}-2^n=256\)

\(\Rightarrow2^n.2^8-2^n=2^8\)

\(\Rightarrow2^n.\left(2^8-1\right)=2^8\)

\(\Rightarrow2^n.255=256\)

\(\Rightarrow2^n=\frac{256}{255}\)

Đề bài sai rùi -_- nếu đúng thì phải thêm dữ kiện chứ