Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)
(=) \(\frac{b}{ab}-\frac{a}{ab}=\frac{1}{a-b}\)
(=) \(\frac{b-a}{ab}=\frac{1}{a-b}\)
(=) \(\left(b-a\right).\left(a-b\right)=ab\)
Vì a,b là 2 số dương
=> \(\hept{\begin{cases}ab>0\left(1\right)\\\left(b-a\right).\left(a-b\right)< 0\left(2\right)\end{cases}}\)
Từ (1) và (2) => Không tồn tại hai số a,b để \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)
b, Cộng vế với vế của 3 đẳng thức ta có :
\(x+y+y+z+x+z=-\frac{7}{6}+\frac{1}{4}+\frac{1}{12}\)
(=) \(2.\left(x+y+z\right)=-\frac{5}{6}\)
(=) \(x+y+z=\frac{-5}{12}\)
Ta có : \(x+y+z=\frac{-5}{12}\left(=\right)-\frac{7}{6}+z=-\frac{5}{12}\left(=\right)z=\frac{3}{4}\)
Lại có \(x+y+z=\frac{-5}{12}\left(=\right)x+\frac{1}{4}=-\frac{5}{12}\left(=\right)x=-\frac{2}{3}\)
Lại có \(x+y+z=-\frac{5}{12}\left(=\right)y+\frac{1}{12}=-\frac{5}{12}\left(=\right)y=\frac{-1}{2}\)
\(1-\frac{1}{2+\frac{1}{3}}=1-\frac{1}{\frac{7}{3}}=1-\frac{3}{7}=\frac{4}{7}=\frac{1}{\frac{7}{4}}=\frac{1}{1+\frac{3}{4}}=\frac{1}{1+\frac{1}{\frac{4}{3}}}=\frac{1}{1+\frac{1}{1+\frac{1}{3}}}\)
Vậy, x = 1; y = 1; z = 3
Áp dụng t/c dãy tỉ số bằng nhau:
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2y-4}{6}=\frac{3z-9}{12}=\frac{x-1-2y+4+3z-9}{2-6+12}\)
\(=\frac{-10-6}{8}=\frac{-16}{8}=-2\)
=>x=(-2).2+1=-3;y=(-2).3+2=-4;z=(-2).4+3=-5
Áp dụng tính chất dãy tỉ số bằng nhau,ta có:
\(\frac{x-1}{2}\)=\(\frac{y-2}{3}\)=\(\frac{2y-4}{6}\)=\(\frac{z-3}{4}=\frac{3z-9}{12}\)=\(\frac{\left(x-2y+3z\right)+\left(-1+4-9\right)}{2-6+12}\)=\(\frac{-10+\left(-6\right)}{8}\)=-2
\(\Rightarrow\)\(\hept{\begin{cases}x-1=-4\\y-2=-6\\z-3=-12\end{cases}}\)\(\Rightarrow\)\(\hept{\begin{cases}x=-3\\y=-4\\z=-9\end{cases}}\)(vì x,y,z là số hữu tỉ)
Vậy x=-3; y=-4; z=-9
Vậy x=-3;y=-4;z=-9
iwnwointwv
cat tuong la ai khong nhan nua may nguoi nay