Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì x, y thuộc Z mà (x-1) (y-2) = 7
=> 7 chia hết cho x - 1; y - 2
=> x - 1; y - 2 thuộc Ư (7) = { -1; 1; -7; 7 }
Ta có :
x-1 | -7 | -1 | 1 | 7 |
y-2 | -1 | -7 | 7 | 1 |
x | -6 | 0 | 2 | 8 |
y | 1 | -5 | 9 | 3 |
Vậy các cặp x, y thỏa mãn là : x =-6,y=1 ; x=0,y=-5 ; x=2,y=9 ; x=8,y=3
Làm tương tự vs các câu còn lại
\(\left(x-1\right)\left(y-2\right)=7\)
\(\Rightarrow x-1;y-2\inƯ\left(7\right)\)
\(Ư\left(7\right)=\left\{1;-1;7;-7\right\}\)
Ta có bảng sau :
x - 1 | 1 | - 1 | 7 | - 7 |
x | 2 | 0 | 8 | - 6 |
y - 2 | 1 | - 1 | 7 | - 7 |
y | 3 | 1 | 9 | - 5 |
Vậy ..........
a) (2x-1)(y+4)=1
Vì (2x-1)(y+4)=1 => (2x-1) và (y+4) phải =1 hoặc là (2x-1) và (y+4) phải = -1
Ta có: TH1 (2x-1) và (y+4) = 1
* y+4=1 => y=1-4
=> y=(-3)
* 2x-1=1 => 2x=1+1
=> x=2:2
=> x=1
Vậy x=1; y=(-3)
Ta có TH2: (2x-1) và (y+4) = (-1)
* y+4=(-1) => y= (-1)-4
=> y= (-5)
* 2x-1=(-1) => 2x= (-1)+1
=> x=0:2
=> x=0
Vậy x=0; y=(-5)
a, 3x ( y+1) + y + 1 = 7
(y+1)(3x +1) =7
th1 : \(\left\{{}\begin{matrix}y+1=1\\3x+1=7\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=0\\x=2\end{matrix}\right.\)
th2: \(\left\{{}\begin{matrix}y+1=-1\\3x+1=-7\end{matrix}\right.\)=> x = -8/3 (loại)
th3: \(\left\{{}\begin{matrix}y+1=7\\3x+1=1\end{matrix}\right.\)=> \(\left\{{}\begin{matrix}y=6\\x=0\end{matrix}\right.\)
th 4 : \(\left\{{}\begin{matrix}y+1=-7\\3x+1=-1\end{matrix}\right.\)=> x=-2/3 (loại)
Vậy (x,y)= (2 ;0); (0; 6)
b, xy - x + 3y - 3 = 5
(x( y-1) + 3( y-1) = 5
(y-1)(x+3) = 5
th1: \(\left\{{}\begin{matrix}y-1=1\\x+3=5\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=2\\x=8\end{matrix}\right.\)
th2: \(\left\{{}\begin{matrix}y-1=-1\\x+3=-5\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=0\\x=-8\end{matrix}\right.\)
th3: \(\left\{{}\begin{matrix}y-1=5\\x+3=1\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=6\\x=-2\end{matrix}\right.\)
th4: \(\left\{{}\begin{matrix}y-1=-5\\x+3=-1\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=-4\\x=-4\end{matrix}\right.\)
vậy (x, y) = ( 8; 2); ( -8; 0); (-2; 6); (-4; -4)
c, 2xy + x + y = 7 => y = \(\dfrac{7-x}{2x+1}\) ; y ϵ Z ⇔ 7-x ⋮ 2x+1
⇔ 14 - 2x ⋮ 2x + 1 ⇔ 15 - 2x - 1 ⋮ 2x + 1
th1 : 2x + 1 = -1=> x = -1; y = \(\dfrac{7-(-1)}{-1.2+1}\) = -8
th2: 2x+ 1 = 1=> x =0; y = 7
th3: 2x+1 = -3 => x = x=-2 => y = \(\dfrac{7-(-2)}{-2.2+1}\) = -3
th4: 2x+ 1 = 3 => x = 1 => y = \(\dfrac{7+1}{2.1+1}\) = 2
th5: 2x + 1 = -5 => x = -3=> y = \(\dfrac{7-(-3)}{-3.2+1}\) = -2
th6: 2x + 1 = 5 => x = 2; ; y = \(\dfrac{7-2}{2.2+1}\) =1
th7 : 2x + 1 = -15 => x = -8; y = \(\dfrac{7-(-8)}{-8.2+1}\) = -1
th8 : 2x+1 = 15 => x = 7; y = \(\dfrac{7-7}{2.7+1}\) = 0
kết luận
(x,y) = (-1; -8); (0 ;7); ( -2; -3) ; ( 1; 2); ( -3; -2); (2;1); (-8;-1);(7;0)
3xy−2x+5y=293xy−2x+5y=29
9xy−6x+15y=879xy−6x+15y=87
(9xy−6x)+(15y−10)=77(9xy−6x)+(15y−10)=77
3x(3y−2)+5(3y−2)=773x(3y−2)+5(3y−2)=77
(3y−2)(3x+5)=77(3y−2)(3x+5)=77
⇒(3y−2)⇒(3y−2) và (3x+5)(3x+5) là Ư(77)=±1,±7,±11,±77Ư(77)=±1,±7,±11,±77
Ta có bảng giá trị sau:
Do x,y∈Zx,y∈Z nên (x,y)∈{(−4;−3),(−2;−25),(2;3),(24;1)}
a) => 2xy +3x=y+1
=> 2xy+3x-y=1
=> x(2y+3) - 1/2 (2y+3) +3/2 =1
=> (x-1/2)(2y+3)=1-3/2= -1/2
=> (2x-1)(2y+3)=-1
ta có bảng
...........
( x - 3 ) . ( y + 1 ) = 7
Lập bảng ta có :
x-3 | 1 | 7 | -1 | -7 |
y+1 | 7 | 1 | -7 | -1 |
x | 4 | 10 | 2 | -4 |
y | 6 | 0 | -8 | -2 |
Vậy ( x ; y ) = { ( 4 ; 6 ) ; ( 10 ; 0 ) ; ( 2 ; -8 ) ; ( -4 ; -2 ) }
a: \(\Leftrightarrow\left(x;y-3\right)\in\left\{\left(1;17\right);\left(17;1\right);\left(-1;-17\right);\left(-17;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(1;20\right);\left(17;4\right);\left(-1;-14\right);\left(-17;2\right)\right\}\)
b: \(\Leftrightarrow\left(x-1;y+2\right)\in\left\{\left(1;7\right);\left(7;1\right);\left(-1;-7\right);\left(-7;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(2;5\right);\left(8;-1\right);\left(0;-9\right);\left(-6;-3\right)\right\}\)
c: =>(y+1)(3x+1)=7
=>\(\left(3x+1;y+1\right)\in\left\{\left(1;7\right);\left(7;1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(0;6\right);\left(2;0\right)\right\}\)