K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 3 2016

a) Cả tử số và mẫu số của \(\frac{7n^2-3n+12}{n^2+2n+2}\) đều dẫn đến \(\infty\) nên không thể trả lời ngay biểu thức đó  tiến đến giới hạn nào (dạng vô định \(\left(\frac{\infty}{\infty}\right)\)). Tuy nhiên sau khi chia cả tử số và mẫu số cho \(n^2\) :

\(\frac{7n^2-3n+12}{n^2+2n+2}=\frac{7-\frac{3}{n}+\frac{12}{n^2}}{1+\frac{2}{n}+\frac{2}{n^2}}\)

Ta thấy ngay tử số gần đến 7 và mẫu số gần đến 1 (vì \(\lim\limits\frac{1}{n^p}=0,p\ge1\)

Điều đó cho phép ta áp dụng công thức và thu được kết quả \(\lim\limits\frac{7n^2-3n+12}{n^2+2n+2}=\lim\limits\frac{7-\frac{3}{n}+\frac{12}{n^2}}{1+\frac{2}{n}+\frac{2}{n^2}}=7\)

23 tháng 3 2016

b) Áp dụng công thức "Nếu tồn tại \(\lim\limits a^n,k\in\)N* thì tồn tại \(\lim\limits\left(a_n\right)^k=\left(\lim\limits a_n\right)^k\)"

ta có : 

\(\lim\limits a_n=\left[\lim\limits\left(\frac{3n^2+n-2}{4n^2+2n+7}\right)\right]^3\)

Mặt khác do \(\lim\limits\frac{3n^2+n-2}{4n^2+2n+7}=\lim\limits\frac{3+\frac{1}{n}-\frac{2}{n^2}}{4+\frac{2}{n}+\frac{7}{n^2}}=\frac{3}{4}\)

nên \(\lim\limits a_n=\left(\frac{3}{4}\right)^3=\frac{27}{64}\)

 

3 tháng 3 2018

x tiến tới đâu zậy bạn?

10 tháng 12 2019

\(\lim\limits\left(\sqrt{2n^2+3}-\sqrt{n^2+1}\right)=\lim\limits\frac{n^2-2}{\left(\sqrt{2n^2+3}+\sqrt{n^2+1}\right)}=\lim\limits\frac{n-\frac{2}{n}}{\sqrt{2+\frac{3}{n^2}}+\sqrt{1+\frac{1}{n^2}}}=+\infty\)

\(\lim\limits\frac{1}{\sqrt{n+1}-\sqrt{n}}=\lim\limits\left(\sqrt{n+1}+\sqrt{n}\right)=+\infty\)

AH
Akai Haruma
Giáo viên
29 tháng 1 2023

a.

\(A=\lim\frac{\sqrt[3]{n^6-7n^3-5n+8}}{n+12}=\lim \frac{\sqrt[3]{\frac{n^6-7n^3-5n+8}{n^3}}}{\frac{n+12}{n}}=\lim \frac{\sqrt[3]{n^3-7-\frac{5}{n^2}+\frac{8}{n^3}}}{1+\frac{12}{n}}\)

Ta thấy:

\(\lim\sqrt[3]{n^3-7-\frac{5}{n^2}+\frac{8}{n^3}}=\infty \)

\(\lim (1+\frac{12}{n})=1\)

Suy ra $A=\infty$

 

AH
Akai Haruma
Giáo viên
29 tháng 1 2023

b.

\(B=\lim\frac{1}{\sqrt{3n+2}-\sqrt{2n+1}}=\lim \frac{1}{\frac{3n+2-(2n+1)}{\sqrt{3n+2}+\sqrt{2n+1}}}=\lim \frac{\sqrt{3n+2}+\sqrt{2n+1}}{n+1}\)

\(=\lim \frac{\sqrt{\frac{3n+2}{n}}+\sqrt{\frac{2n+1}{n}}}{\frac{n+1}{\sqrt{n}}}=\lim \frac{\sqrt{3+\frac{2}{n}}+\sqrt{2+\frac{1}{n}}}{\sqrt{n}+\frac{1}{\sqrt{n}}}\)

Ta thấy:

\(\lim( \sqrt{3+\frac{2}{n}}+\sqrt{2+\frac{1}{n}})=\sqrt{3}+\sqrt{2}>0\)

\(\lim (\sqrt{n}+\frac{1}{\sqrt{n}})=\infty\)

$\Rightarrow B=\infty$

4 tháng 4 2017

a) lim (n3 + 2n2 – n + 1) = lim n3 (1 + ) = +∞

b) lim (-n2 + 5n – 2) = lim n2 ( -1 + ) = -∞

c) lim ( - n) = lim
= lim = lim = lim = .

d) lim ( + n) = lim ( + n) = lim n ( + 1) = +∞.



AH
Akai Haruma
Giáo viên
27 tháng 11 2023

1.

\(\lim (n^3+4n^2-1)=\infty\) khi $n\to \infty$

2. 

\(\lim\limits_{n\to -\infty} \frac{(n+1)\sqrt{n^2-n+1}}{3n^2+n}=\lim\limits_{n\to -\infty}\frac{-\frac{n+1}{n}.\sqrt{\frac{n^2-n+1}{n^2}}}{3+\frac{1}{n}}\\ =\lim\limits_{n\to -\infty}\frac{-(1+\frac{1}{n})\sqrt{1-\frac{1}{n}+\frac{1}{n^2}}}{3+\frac{1}{n}}=\frac{-1}{3}\)

\(\lim\limits_{n\to +\infty} \frac{(n+1)\sqrt{n^2-n+1}}{3n^2+n}=\lim\limits_{n\to +\infty}\frac{\frac{n+1}{n}.\sqrt{\frac{n^2-n+1}{n^2}}}{3+\frac{1}{n}}\\ =\lim\limits_{n\to +\infty}\frac{(1+\frac{1}{n})\sqrt{1-\frac{1}{n}+\frac{1}{n^2}}}{3+\frac{1}{n}}=\frac{1}{3}\)

AH
Akai Haruma
Giáo viên
27 tháng 11 2023

3.

\(\lim \frac{1+2+...+n}{2n^2}=\lim \frac{n(n+1)}{4n^2}=\lim \frac{n^2+n}{4n^2}\\ =\lim (\frac{1}{4}+\frac{1}{4n})=\frac{1}{4}\)

4.

\(\lim \frac{3^n-4.2^{n-1}-10}{7.2^n+4^n}=\lim \frac{(\frac{3}{4})^n-(\frac{2}{4})^{n-1}-\frac{10}{4^n}}{7(\frac{2}{4})^n+1}\\ =\lim \frac{(\frac{3}{4})^n-(\frac{1}{2})^{n-1}-\frac{10}{4^n}}{7(\frac{1}{2})^n+1}\\ =\frac{0-0-0}{7.0+1}=0\)

6 tháng 1 2023

`a)lim[5n^3-3n^2+1]/[1-3n^3]`

`=lim[5-3/n+1/[n^3]]/[1/[n^3]-3]`

`=5/[-3]=-5/3`

_____________________________
`b)lim[-9n+5]/[3n-3]`

`=lim[-9+5/n]/[3-3/n]`

`=[-9]/3=-3`