Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y=\left|x^2+x+16\right|+\left|x^2+x-6\right|=\left|x^2+x+16\right|+\left|6-x-x^2\right|\)
\(\ge\left|x^2+x+16+6-x-x^2\right|=22\)
Dấu m"=" xảy ra <=> \(-16\le x^2+x\le6\)
<=> \(-3\le x\le2\)
Vậy giá trị nhỏ nhất của y = 22 đạt tại \(-3\le x\le2\)
- A=x2+6x+10=x^2+2.3x+9+1=(x+3)2+1 dat gia tri nho nhat la 1 khi do x=-3
Ta có :
\(P=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)
\(=\left[\left(x-1\right)\left(x+6\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]\)
\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)
\(=\left(x^2+5x\right)^2-36\)
Vì \(\left(x^2+5x\right)^2\ge0\forall x\)
\(\Rightarrow\left(x^2+5x\right)^2-36\ge-36\forall x\)
Dấu bằng xảy ra khi và chỉ khi :
\(\left(x^2+5x\right)^2=0\)
\(\Leftrightarrow x^2+5x=0\)
\(x\left(x+5\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x+5=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)
Vậy \(P_{min}=-36\)tại \(\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)
a(x+a+1)=\(a^3\)+2x-2
ax+\(a^2\)+a=\(a^3\)+2x-2
ax-2x=\(a^3\)-\(a^2\)-a-2
x(a-2)=\(a^3\)-\(a^2\)-a-2
x=\(\frac{a^3-a^2-a-2}{a-2}\)=\(a^2\)+a+1=\(\left(a+\frac{1}{2}\right)^2\)+\(\frac{3}{4}\)
Ta có \(\left(a+\frac{1}{2}\right)^2\)\(\ge\)0
=> x=\(\left(a+\frac{1}{2}\right)^2\)+\(\frac{3}{4}\)\(\ge\)\(\frac{3}{4}\)
Vậy với a\(\ne\)2 thì nghiệm đạt giá trị nhỏ nhất là \(\frac{3}{4}\) dấu = xảy ra khi a+\(\frac{1}{2}\)=0=>a=-\(\frac{1}{2}\)
the sao lai co x.........neu x ......la so lon 1000000000000 .....thj sao
a(x + a + 1) = a3 + 2x - 2
<=> ax + a2 + a = a3 + 2x - 2
<=> ax - 2x = a3 - a2 - a - 2
<=> (a - 2).x = (a - 2).(a2 + a + 1)
<=> x = a2 + a + 1 (Vì a khác 2 nên a - 2 khác 0)
<=> x = a2 + 2.a.1/2 + 1/4 + 3/4
<=> x = (a + 1/2)2 + 3/4 \(\ge\)3/4
Dấu "=" xảy ra <=> a + 1/2 = 0 <=> a = -1/2
Vậy a = -1/2 thì x có GTNN.
\(a\left(x+a+1\right)=a^3+2x-2\) 2
\(\Leftrightarrow ax+a^2+a=a^3+2x-2\)
\(\Leftrightarrow ax-2x=a^3-a^2-a-2\)
\(\Leftrightarrow\left(a-2\right)\times x=\left(a-2\right)\times\left(a^2+a+1\right)\)
\(\Leftrightarrow x=a^2+a+1\). Vì \(a\ne2\)nên \(a-2\ne0\)
\(\Leftrightarrow x=a^2+2\times a\times\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\)
\(\Leftrightarrow x=\left(a+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Dấu \("="\) xảy ra
\(\Leftrightarrow a+\frac{1}{2}=0\)
\(\Leftrightarrow a=-\frac{1}{2}\)
Vậy \(a=-\frac{1}{2}\)thì \(x\)có \(GTNN\)
\(P=\left(x-1\right)\left(x+6\right)\left(x+2\right)\left(x+3\right)\)
\(P=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)
\(P=\left(x^2+5x\right)^2-36\)
\(P=\left[x\left(x+5\right)\right]^2-36\)
Vậy GTNN của P = -36 khi x = 0 hoặc -5.