Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(\Delta\) = b2 - 4ac = (-m)2 - 4(2m - 4)
= m2 - 8m + 16 = ( m - 4 )2
Ta có: ( m - 4 )2 \(\ge\) 0
=> Pt luôn có nghiệm
b) Vì phương trình luôn có nghiệm nên áp dụng định lí Ta- lét:
\(\left\{{}\begin{matrix}x_1+x_2=\frac{-b}{a}==m\\x_1x_2=2m-4\end{matrix}\right.\)
Xét phương trình: x12 + x22 - 9
= x12 + x22 + 2x1x2 - 2x1x2 - 9
= (x1 + x2)2 - 2x1x2 - 9
= (-m)2 - 2(2m - 4) - 9
= m2 - 4m + 8 - 9
= m2 - 4m - 1 = m2 - 4m + 4 - 5
= (m - 2)2 - 5
Xét (m - 2)2 \(\ge\) 0
=> (m - 2)2 - 5 \(\ge\) -5
Dấu " =" xảy ra khi m - 2 = 0
<=> m = 2
\(\Delta=m^2-8m+16=\left(m-4\right)^2\ge0\Rightarrow\) pt luôn có nghiệm
Khi đó theo Viet \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=2m-4\end{matrix}\right.\)
\(A=x_1^2+x_2^2-9=\left(x_1+x_2\right)^2-2x_1x_2-9\)
\(A=m^2-2\left(2m-4\right)-9\)
\(A=m^2-4m-1\)
\(A=\left(m-2\right)^2-5\ge-5\)
\(\Rightarrow A_{min}=-5\) khi \(m=-2\)
\(\left\{{}\begin{matrix}3\left(x-6\right)< -3\\\frac{5x+m}{2}>7\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x-6< -1\\5x+m>14\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x< 5\\x>\frac{14-m}{5}\end{matrix}\right.\Leftrightarrow\frac{14-m}{5}< x< 5\)
Để hệ có nghiệm thì: \(\frac{14-m}{5}< 5\Leftrightarrow14-m< 25\Leftrightarrow m>-11\)
Chúc bạn học tốt nha
\(\left\{{}\begin{matrix}x+my=m+1\\mx+y=3m-1\end{matrix}\right.\)
Xét \(m=0\) , hệ pt tương đương:
\(\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\Rightarrow x+y=0\left(\text{loại}\right)\)
\(\Rightarrow m\ne0\)
Hệ pt có nghiệm duy nhất khi:
\(\frac{1}{m}\ne m\Leftrightarrow m\ne\pm1\)
Hệ pt tương đương:
\(\left\{{}\begin{matrix}x=m+1-my\\m\left(m+1-my\right)+y=3m-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=m+1-my\\y\left(m^2-1\right)=\left(m-1\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{3m+1}{m+1}\\y=\frac{m-1}{m+1}\end{matrix}\right.\)
\(\Rightarrow x+y=\frac{4m}{m+1}\)
\(x+y< 0\Leftrightarrow\frac{4m}{m+1}< 0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}4m>0\\m+1>0\end{matrix}\right.\\\left\{{}\begin{matrix}4m< 0\\m+1< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}m>0\\m>-1\end{matrix}\right.\\\left\{{}\begin{matrix}m< 0\\m< -1\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m>0\\m< -1\end{matrix}\right.\)
Vậy để hệ phương trình có nghiệm duy nhất \(\left(x;y\right)\) thỏa mãn \(x+y< 0\) thì \(m>0;m< -1;m\ne1\)
Vì \(x_2\)là nghiệm của phương trình
=> \(x_2^2-5x_2+3=0\)
=> \(x_2+1=x^2_2-4x_2+4=\left(x_2-2\right)^2\)
Theo viet ta có
\(\hept{\begin{cases}x_1+x_2=5\\x_1x_2_{ }=3\end{cases}}\)=> \(x_1^2+x_2^2=19\)
Khi đó
\(A=||x_1-2|-|x_2-2||\)
=> \(A^2=\left(x^2_1+x_2^2\right)-4\left(x_1+x_2\right)+8-2|\left(x_1-2\right)\left(x_2-2\right)|\)
=> \(A^2=19-4.5+8-2|3-2.5+4|=1\)
Mà A>0(đề bài)
=> A=1
Vậy A=1
Pt đã cho có 3 nghiệm pb khi nó có một nghiệm bằng 0
\(\Rightarrow m^2-1=0\Rightarrow m=\pm1\)
- Với \(m=1\Rightarrow-x^2=0\) chỉ có 1 nghiệm (ktm)
- Với \(m=-1\Rightarrow-2x^4+x^2=0\Rightarrow\left[{}\begin{matrix}x=0\\x=\pm\frac{\sqrt{2}}{2}\end{matrix}\right.\) (t/m)
Vậy \(m=-1\)