Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\left\{{}\begin{matrix}a=1>0\\\Delta'=\left(m-1\right)^2-\left(4m+8\right)\le0\end{matrix}\right.\)
\(\Leftrightarrow m^2-6m-7\le0\)
\(\Rightarrow-1\le m\le7\)
\(\Rightarrow m=\left\{-1;0;1;2;3;4;5;6;7\right\}\)
- Với \(m=-1\) BPT trở thành: \(1>0\) thỏa mãn
- Với \(m\ne-1\) BPT nghiệm đúng với mọi x khi và chỉ khi:
\(\left\{{}\begin{matrix}m+1>0\\\Delta'=\left(m+1\right)^2-\left(m+1\right)\left(2m+3\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>-1\\\left(m+1\right)\left(-m-2\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>-1\\\left[{}\begin{matrix}m< -2\\m>-1\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}m< -2\\m\ge-1\end{matrix}\right.\)
Để \(ax^2+bx+c\ge0\) \(\forall x\in R\) thì \(\left\{{}\begin{matrix}a>0\\\Delta\le0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}3-m>0\\\Delta'=\left(m+3\right)^2-\left(3-m\right)\left(m+2\right)\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 3\\2m^2+5m+3\le0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m< 3\\-\dfrac{3}{2}\le m\le-1\end{matrix}\right.\)
\(\Rightarrow-\dfrac{3}{2}\le m\le-1\)
bpt (1) \(\Leftrightarrow x\in\left(-5;3\right)\)=> S1=(-5;3)
bpt (2):
Nếu m=-1 =>S2=\(\varnothing\)
Nếu m>-1 =>S2=\(\left[\frac{3}{m+1};+\infty\right]\)
Nếu m<-1 => S2=\(\left[-\infty;\frac{3}{m+1}\right]\)
Hệ có nghiệm \(\Leftrightarrow S1\cap S2\ne\varnothing\)
Nếu m=-1 =>\(S1\cap S2=\varnothing\) (Loại)
Nếu m>-1 =>\(S1\cap S2\ne\varnothing\)
Nếu m<-1 =>\(S1\cap S2\ne\varnothing\)
vì sao mà hệ có nghiệm thì S1 giao S2 phải khác tập hợp rỗng ? mà tại sao bạn lại biện luận bất phương trình như vậy ?
- Với \(m=-1\Rightarrow4< 0\) không thỏa mãn
- Với \(m\ne-1\) BPT nghiệm đúng với mọi x khi và chỉ khi:
\(\left\{{}\begin{matrix}m+1< 0\\\Delta'=\left(m+1\right)^2-4\left(m+1\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< -1\\\left(m+1\right)\left(m-3\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< -1\\-1< m< 3\end{matrix}\right.\)
\(\Rightarrow\) Không tồn tại m thỏa mãn yêu cầu
\(\int_{\Delta'=\left(m+1\right)^2-3\left(m-1\right)\left(m-2\right)<0}^{m-1>0}\)\(\int\limits^{m>1}_{-2m^2-7m+-5<0}\)=>\(\int_{m<-1;m>\frac{5}{2}}^{m>1}\)=> m > 5/2
sao mik chon được m>5/2 vậy