\(x=x^2+y^2\)v...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2018

Nói vô nghiệm thì nên xem lại,nói có nghiệm cũng nên xem lại,nói chung là xem lại!!!

Giải tiếp đây để thế cãi nhau chết con nhà người ta:v

\(\left(x+y\right)^2=\left(x+y\right)^1\)

\(\Rightarrow\left(x+y\right)^2-\left(x+y\right)^1=0\)

\(\Rightarrow\left(x+y\right)\left[\left(x+y\right)-1\right]=0\)

\(\Rightarrow\left[{}\begin{matrix}x=-y\\x+y=1\end{matrix}\right.\)

25 tháng 3 2018

\(\left\{{}\begin{matrix}x=x^2+y^2\\y=2xy\end{matrix}\right.\Leftrightarrow x+y=x^2+2xy+y^2\)

\(\Rightarrow\left(x+y\right)^2=\left(x+y\right)^1\)

Đến đây giải được không????

10 tháng 3 2020

- Ta có: \(x+y+z=0\)

      \(\Leftrightarrow x+y=-z\)

      \(\Leftrightarrow\left(x+y\right)^2=\left(-z\right)^2\)

      \(\Leftrightarrow x^2+y^2+2xy=z^2\)

      \(\Leftrightarrow x^2+y^2-z^2=-2xy\)

- CMT2\(y^2+z^2-x^2=-2yz\)

             \(z^2+x^2-y^2=-2zx\)

- Thay \(x^2+y^2-z^2=-2xy,\)\(y^2+z^2-x^2=-2yz,\)\(z^2+x^2-y^2=-2zx\)vào đa thức P

- Ta có: \(P=\frac{x^2}{-2yz}+\frac{y^2}{-2zx}+\frac{z^2}{-2xy}\)

     \(\Leftrightarrow P=\frac{x^3+y^3+z^3}{-2xyz}\)

- Đặt \(a=x^3+y^3+z^3\)

- Ta lại có: \(a=\left(x+y\right)^3+z^3-3xy.\left(x+y\right)\)

           \(\Leftrightarrow a=\left(x+y+z\right)^3-3.\left(x+y\right).z.\left(x+y+z\right)-3ab.\left(x+y\right)\)

- Mặt khác: \(x+y+z=0\)

            \(\Leftrightarrow x+y=-z\)

- Thay \(x+y+z=0,\)\(x+y=-z\)vào đa thức a

- Ta có: \(a=-3xy.\left(-z\right)=3xyz\)

- Thay \(a=3xyz\)vào đa thức P

- Ta có: \(P=\frac{3xyz}{-2xyz}=-\frac{3}{2}\)

Vậy \(P=-\frac{3}{2}\)

27 tháng 10 2017

Phạm Hoàng Giang

Dương Yến Tử

Nguyễn Huy Tú

help me

12 tháng 9 2017

Từ \(x+y=4\Rightarrow y=4-x\)

\(\Rightarrow\left|x+2\right|+\left|y\right|=\left|x+2\right|+\left|4-x\right|=6\)(1)

Áp dụng bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) dấu "=" xảy ra \(\Leftrightarrow ab\ge0\) ta có :

\(\left|x+2\right|+\left|4-x\right|\ge\left|x+2+4-x\right|=6\)

Vậy để (1) xảy ra \(\Leftrightarrow\left(x+2\right)\left(4-x\right)\ge0\Leftrightarrow-2\le x\le4\)

Với x = - 2 thì y = 6 ; x = - 1 thì y = 5; x = 0 thì y = 4; x = 1 thì y = 3; x = 2 thì y = 2 ; x = 3 thì y = 1; x = 4 thì y = 0

Vậy \(\left(x;y\right)=\left\{\left(-2;6\right);\left(-1;5\right);\left(0;4\right);\left(1;3\right);\left(2;2\right);\left(3;1\right);\left(4;0\right)\right\}\)

20 tháng 2 2019

easy lắm 

Công vế theo vế ta được : x+y+y+z+x+z=\(\frac{-7}{6}\)+\(\frac{1}{4}\)+\(\frac{1}{12}\)=\(\frac{-5}{6}\)

Suy ra 2.(x+y+z)=\(\frac{-5}{6}\) suy ra x+y+z=\(\frac{-5}{12}\)

suy ra x+y=\(\frac{-5}{12}\)-z ; y+z=\(\frac{-5}{12}\)-x ; x+z=\(\frac{-5}{12}\)-y

Thay vào ta có : \(\frac{-5}{12}\)-z=\(\frac{-7}{6}\) suy ra z= \(\frac{3}{4}\)

                          \(\frac{-5}{12}\)-x=\(\frac{1}{4}\) suy ra x=\(\frac{-2}{3}\)

                            \(\frac{-5}{12}\)-y=\(\frac{1}{12}\) suy ra y=\(\frac{-1}{2}\)

easy Hok tốt nhé b

7 tháng 3 2021

Ta có \(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{xz}{x+z}\)

=> \(\frac{xyz}{xz+yz}=\frac{xyz}{xy+xz}=\frac{xyz}{xy+yz}\)

=> \(xz+yz=xy+xz=xy+yz\)(vì x ; y ;z \(\ne0\Leftrightarrow xyz\ne0\))

=> \(\hept{\begin{cases}xz+yz=xy+xz\\xy+xz=xy+yz\\xz+yz=xy+yz\end{cases}}\Rightarrow\hept{\begin{cases}yz=xy\\xz=yz\\xz=xy\end{cases}}\Rightarrow\hept{\begin{cases}z=x\\x=y\\y=z\end{cases}}\Rightarrow x=y=z\)

Khi đó M = \(\frac{x^2+y^2+z^2}{xy+yz+zx}=\frac{x^2+y^2+z^2}{x^2+y^2+z^2}=1\left(\text{vì }x=y=z\right)\)

24 tháng 3 2018

a/ Ta có VP là số lẻ nên VT cũng phải là số lẻ. Hay trong 2 số x, y phải có 1 số lẻ.

Giả sử số lẻ đó là x thì ta có

\(\hept{\begin{cases}x=2m+1\\y=2n\end{cases}}\)

\(\Rightarrow\left(2m+1\right)^2+\left(2n\right)^2=1999\)

\(\Leftrightarrow4\left(m^2+m+n\right)=1998\)

Ta thấy VT chia hết chi 4 còn VP không chia hết cho 4 nên phương trình vô nghiệm

24 tháng 3 2018

b/ \(9x^2+2=y^2+y\)

\(\Leftrightarrow36x^2+8=4y^2+4y\)

\(\Leftrightarrow\left(2y+1\right)^2-36x^2=9\)

\(\Leftrightarrow\left(2y+1-6x\right)\left(2y+1+6x\right)=9\)

1 tháng 11 2019

áp dụng tính chất của dãy tỉ số bằng nhau ta có:

x+y/9=y+z/12=z+x/13=2x+2y+2z/9+12+13=2(x+y+z)/34=2.51/34=102/34=3

suy ra: x+y=27; y+z=36: z+x=39

ta có: x+y+z=51

suy ra: 

x=51-(y+z)=51-36=15

y=51-(z+x)=51-39=12

z=51-(x+y)51-27=24

1 tháng 11 2019

Đỗ Văn Dương Nhơng x<y mà bạn , mik cũng tham khảo mấy bài trc ròi, mik ko hiểu tại sao lại nhơ thế ,x<y mà

26 tháng 4 2020

3H là mình nộp rồi ạ ai đi qua giúp mình với mình gấp lắm ạkhocroi

26 tháng 4 2020

GIÚP MÌNH VỚI MÌNH ĐANG RẤT LÀ GẤP Ạ HUHUUUUUkhocroi