Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Những đường thẳng song song với mặt phẳng (EFGH) là: AB; BC; CD; DA.
b) Đường thẳn AB song song với những mặt phẳng: (CDHG); (EFGH); (DCFE)
c) Đường thẳng AD song song với những đường thẳng: BC, FG, EH
a) Những đường thẳng song song với mặt phẳng (EFGH) là: AB; BC; CD; DA.
b) Đường thẳn AB song song với những mặt phẳng: (CDHG); (EFGH); (DCFE)
c) Đường thẳng AD song song với những đường thẳng: BC, FG, EH
a) Tứ giác 1 chỉ có một cặp cạnh song song
b) Tứ giác 3 có hai cặp cạnh song song
c) Tứ giác 1 và tứ giác 3 là hình thang
a. Tứ giác 1 chỉ có một cặp cạnh song song ;
b. Tứ giác 3 có hai cặp cạnh song song ;
c. Tứ giác 1 và 3 là hình thang.
a. Ta có: AD // BC, đường thẳng AD1 cắt AD nhưng nó không cắt BC.
Vậy mệnh đề a sai.
b. Hai đường thẳng AA1 và BC không có điểm chung nhưng chúng không song song
Vậy mệnh đề b sai.
Xét tam giác ABC ta có:
ON // AB (gt)
=> \(\dfrac{ON}{AB}=\dfrac{CO}{CA}\left(1\right)\)\(\dfrac{ON}{AB}=\dfrac{CO}{CA}\left(2\right)\)
Xét tam giác ABD ta có:
OM // AB (gt)
=> \(\dfrac{OM}{AB}=\dfrac{DO}{DB}\left(2\right)\)
Vì AB // CD nên \(\dfrac{DO}{DB}=\dfrac{CO}{CA}\left(3\right)\)
Từ (1), (2) và (3) suy ra:
\(\dfrac{ON}{AB}=\dfrac{OM}{AB}=>OM=ON\)
Vậy OM = ON.
a) Những cặp mặt phẳng song song nhau: (ABC) // (A'B'C')
b) Những cặp mặt phẳng vuông góc với nhau: (ABB'A') ⊥ (A'B'C); (ACC'A') ⊥ (A'B'C'); (BCC'B') ⊥ (A'B'C); (ABB'A') ⊥ (ABC); (ACC'A') ⊥ (ABC); (BCC'B') ⊥ (ABC)
c) Điền vào ô trống:
Ta có: mp(ABCD) // mp(A1B1C1D1)
AB thuộc mp(ABCD)
A1D1 thuộc mp(A1B1C1D1)
AB không song song với A1D1
Vậy mệnh đề đã cho sai.
Các bước tiến hành:
- Xét xem cần phải kiểm tra hai cạnh nào thuộc hai đường thẳng song song với nhau.
- Đặt mép cạnh góc vuông của êke trùng với một trong hai cạnh cần kiểm tra.
- Đặt mép thước trùng với mép cạnh góc vuông còn lại của êke.
- Giữ nguyên vị trí thước, dời êke để xét xem cạnh góc vuông của êke có trùng với cạnh còn lại mà ta cần kiểm tra của tứ giác. Nếu chúng trùng nhau thì tứ giác đó là hình thang.
Các tứ giác ABCD, IKMN là hình thang.
Tứ giác EFGH không là hình thang.
Bài giải:
Các bước tiến hành:
- Xét xem cần phải kiểm tra hai cạnh nào thuộc hai đường thẳng song song với nhau.
- Đặt mép cạnh góc vuông của êke trùng với một trong hai cạnh cần kiểm tra.
- Đặt mép thước trùng với mép cạnh góc vuông còn lại của êke.
- Giữ nguyên vị trí thước, dời êke để xét xem cạnh góc vuông của êke có trùng với cạnh còn lại mà ta cần kiểm tra của tứ giác. Nếu chúng trùng nhau thì tứ giác đó là hình thang.
Các tứ giác ABCD, IKMN là hình thang.
Tứ giác EFGH không là hình thang.
Trên hình 13a ta có:
APPBAPPB = 3838; AMMCAMMC= 515515 = 1313 vì 3838 ≠ 1313 nên APPBAPPB ≠ AMMCAMMC => PM và MC không song song.
Ta có CNNB=217=3CMMA=155=3}=>CMMA=CNNBCNNB=217=3CMMA=155=3}=>CMMA=CNNB => MN//AB
Trong hình 13b
Ta có: OA′A′AOA′A′A = 2323; OB′B′BOB′B′B = 34,534,5 = 2323
=>