Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bấm vào đây Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
Đặt A là số cần tìm. Ta có: A= 5m^5 = 3.n^3 = 2.p^2
Như vậy A có các ước nguyên tố 5,3,2. Mà A là số bé nhất thỏa mãn nên ta có A = 5^a.3^b.2^c
Xét nhân tử 5^a, vì A/3=n^3, A/2=p^2 nên n^3,p^2 chứa nhân tử 5^a=> a phải chia hết cho 2,3
Mặt khác A=5.m^5 nên a chia 5 dư 1 => a nhỏ nhất là 6
Tương tự ta có b chia hết cho 2,5, chia 3 dư 1 nên b nhỏ nhất là 10
c chia hết cho 5,3 chia 2 dư 1 nên c nhỏ nhất là 15
Vậy A nhỏ nhất là 5^6.3^10.2^15. Thử lại thỏa mãn.
1) +) Nếu cả hai số nguyên tố đều > 3 => 2 số đó lẻ => tổng và hiệu của chúng là số chẵn => Loại
=> Trong hai số đó có 1 số bằng 2. gọi số còn lại là a
+) Nếu a = 3 : ta có 3 + 2 = 5 ; 3 -2 = 1, 1 không là số nguyên tố => Loại
+) Nếu > 3 thì có thể có dạng: 3k + 1 ( k \(\in\)N*) hoặc 3k + 2 (k \(\in\) N*)
Khi a = 3k + 1 => a+ 2 = 3k + 3 = 3.(k + 1) là hợp số với k \(\in\) N* => Loại
Khi a = 3k + 2 => a + 2 = 3k + 4 ; a - 2 = 3k . 3k; 3k + 4 đều là số nguyên tố với k = 1 . Với k > 1 thì 3k là hợp số nên Loại
Vậy a = 3. 1+ 2 = 5
Vậy chỉ có 2 số 2;5 thỏa mãn
1. 2,3,5,7:2+3+5+7=17(nguyên tố)
2.Có: 2001+2
3.2 và 1:2+1=3(nguyên tố);1.2=2(nguyên tố)
Đây là toán nâng cao chuyên đề số nguyên tố, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này bằng phương pháp đánh giá như sau:
Giải:
TH1: Nếu số nguyên tố nhỏ nhất trong bốn số là 2 các số nguyên tố tiếp theo là: 2; 3; 5; 7. Tổng bốn số nguyên tố liên tiếp là:
2 + 3 + 5 + 7 = 17 (thỏa mãn)
TH2: Nếu bốn số nguyên tố liên tiếp không có bất cứ số nào bằng 2 thì tổng bốn số đó là số chẵn lớn hơn 2(là hợp số loại)
Vậy bốn số nguyên tố liên tiếp thỏa mãn đề bài là: 2;3;5;7
Gọi 7 số nguyên tố là p1;p2;p3;...;p7
Ta có:
p1.p2...p7 =p1^6+p2^6+...+p7^6 [*]
Giả sử trong 7 số nguyên tố trên có k số khác 7 với \(0\le x\le7\)
*Nếu k= 0 thì cả bảy số trên đều bằng 7 thì ta có:
7.7.7.7.7.7.7=7^6+7^6+7^6+7^6+7^6+7^6+7^6 thỏa mã [*]
*Nếu k= 7 thì cả bảy số nguyên tố trên đều là số nguyên tố khác 7 thì vế trái của [*] không chia hết cho 7 , vế phải của [*] chia hết cho 7 mà ta có nếu số nguyên a ko chia hết cho 7 thì a^6 chia 7 dư 1 [định lí fec ma ; lớp 6 chưa học nên mik ko nói]
=> điều này ko xảy ra
Vậy chỉ xảy ra bảy số nguyên tố trong đề bài đều là 7