K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2024

Olm chào em, em nên viết bằng công thức toán học nơi có biểu tượng \(\Sigma\) góc trái màn hình em nhé.

21 tháng 6 2017

m.n/(m^2+n^2 ) và m.n/2018
- Đặt (m,n)=d => m= da;n=db ; (a,b)=1
=> d^2(a^2+b^2)/(d^2(ab))  = (a^2+b^2)/(ab) => b/a ; a/b => a=b=> m=n=> ( 2n^2+2018)/n^2 =2 + 2018/n^2 => n^2/2018
=> m=n=1 ; lẻ và nguyên tố cùng nhau. vì d=1

23 tháng 8 2017

Vẽ SH _I_ (ABCD) => H là trung điểm AD => CD _I_ (SAD) 
Vẽ HK _I_ SD ( K thuộc SD) => CD _I_ HK => HK _I_ (SCD) 
Vẽ AE _I_ SD ( E thuộc SD). 
Ta có S(ABCD) = 2a² => SH = 3V(S.ABCD)/S(ABCD) = 3(4a³/3)/(2a²) = 2a 
1/HK² = 1/SH² + 1/DH² = 1/4a² + 1/(a²/2) = 9/4a² => HK = 2a/3 
Do AB//CD => AB//(SCD) => khoảng cách từ B đến (SCD) = khoảng cách từ A đến (SCD) = AE = 2HK = 4a/3

20 tháng 5 2016

a) Nếu p=3 thì \(2^p+p^2=2^3+3^2=17\) là số nguyên tố

Nếu \(p\ge5\) thì \(2^p+p^2=\left(2^p+1\right)+\left(p^2-1\right)=\left(2^p+1\right)+\left(p-1\right)\left(p+1\right)\)

Khi p là số nguyên tố , \(p\ge5\)=> p lẻ và p không chia hết cho 3; do đó: \(\left(2^p+1\right)\)chia hết cho 3 và (p-1)(p+1) chia hết cho 3 \(\Rightarrow\left(2^p+p^2\right)\)chia hết cho 3 \(\Rightarrow p^2+2^p\)không là số nguyên tố

Khi p=2, ta có : \(2^p+p^2=2^2+2^2=8\)là hợp số

Vậy duy nhất có p=3 thỏa mãn.

b) \(a+b+c+d=7\Rightarrow b+c+d=7-a\Rightarrow\left(b+c+d\right)^2=\left(7-a\right)^2\)

Mặt khác: \(\left(b+c+d\right)^2\le3\left(b^2+c^2+d^2\right)\Rightarrow\left(7-a\right)^2\le3\left(13-a^2\right)\) 

Lại có : \(\left(7-a\right)^2\le3\left(13-a^2\right)\Leftrightarrow49-14a+a^2\le39-3a^2\Leftrightarrow4a^2-14a+10\le0\)

Giải ra được : \(1\le a\le\frac{5}{2}\)

Vậy : a có thể nhận giá trị lớn nhất là \(\frac{5}{2}\), nhận giá trị nhỏ nhất là 1

15 tháng 10 2019

là số hữu tỉ nên sẽ sẽ có dạng \(\frac{a-b\sqrt{2}}{b-c\sqrt{2}}=\frac{m}{n}< =>an-bn\sqrt{2}=bm-cm\sqrt{2}< =>\)

an-bm=\(\sqrt{2}\)(bn-cm)

an-bm là số nguyên; nên \(\sqrt{2}\left(bn-cm\right)\)là số nguyên => bn-cm=0 => an-bm=0

ta có bn=cm; bm=an => b2mn = cman <=> b2 =ac

\(a^2+b^2+c^2=a^2+c^2+2ac+b^2=\left(a+c\right)^2-2b^2+b^2=\)\(\left(a+c\right)^2-b^2=\left(a+c-b\right)\left(a+c+b\right)\)(1)

dễ thấy a+c-b>a+c+b nên để (1) là số nguyên tố thì a+c-b=1 => a2+b2+c2 =a+b+c

<=> a(a-1)+b(b-1)+c(c-1) = 0 => a=b=c=1

thử lại ta thấy thỏa mãn điều kiện đề bài => a=b=c=1

15 tháng 10 2019

Sửa lại một chút: a2+b2+c2 =a2+c2+2ac -2ac+b2 =(a+c)2-2ac+b2

1 tháng 9 2018

p=a^2+b^2 (1)

p là số nguyên tố, p-5 chia hết 8 => p lẻ >=13  và a,b có 1 chẵn 1 lẻ

A=a.x^2-b.y^2 chia hết cho p, nên có thể viết  A = p(c.x^2 -d.y^2) với c,d phải nguyên

và c.p = a và d.p = b

thay (1) vào ta thấy c=a/(a^2+b^2) cần nguyên là vô lý vậy A muốn chia hết cho p <=> x và y cùng là bội số của p 

2 tháng 9 2018

Đặt \(p=8k+5\left(đk:K\in N\right)\)

Vì: \(\left(ax^2\right)^{4k+2}-\left(by^2\right)^{4k+2}⋮\left(ax^2-by^2\right)\)

\(\Rightarrow a^{4k+2}.x^{8k+4}-b^{4k+2}.y^{8k+4}⋮p\)

Mà \(a^{4k+2}.x^{8k+4}-b^{4k+2}.y^{8k+4}\)\(=\left(a^{4k+2}+b^{4k+2}\right).x^{8k+4}-b^{4k+2}\)\(\left(x^{8k+4}+y^{8k+4}\right)\)

Ta lại có: \(a^{4k+2}+b^{4k+2}=\left(a^2\right)^{2k+1}+\left(b^2\right)^{2k+1}⋮p\) ; p<d nên \(x^{8k+4}+y^{8k+4}⋮p\)

Làm tiếp đi 

25 tháng 10 2020

thấy ngay \(p_6>2\text{ do đó: }VP\equiv1\left(\text{mod 8}\right)\text{ từ đó suy VP cũng đồng dư với 1 mod 8}\)

có bổ đề SCP LẺ chia 8 dư 1 do đó:

trong 5 số: \(p_1;p_2;...;p_5\text{ có 4 số chẵn; 1 số lẻ không mất tính tổng quát giả sử: }p_5\text{ lẻ}\Rightarrow16+p_5^2=p_6^2\text{(đơn giản)}\)

25 tháng 10 2020

\(p+1=2a^2;p^2+1=2b^2\Rightarrow p\left(p-1\right)=2\left(b-a\right)\left(b+a\right)\)

\(\text{thấy ngay p lẻ}\Rightarrow UCLN\left(p^2+1,p+1\right)=1;\Rightarrow\left(a,b\right)=1\Rightarrow\left(b-a,a+b\right)=1\)

thấy ngay p>b-a nên: \(p=a+b;p-1=2a-2b\text{ hay:}a+b=2b-2a+1\Leftrightarrow3a=b+1\)

đến đây thì đơn giản

10 tháng 12 2018

Từ gt \(\Rightarrow ab-ac-bc+c^2=c^2\)

        \(\Leftrightarrow ab=ac+bc\)

       \(\Leftrightarrow ab=c\left(a+b\right)\)

       \(\Leftrightarrow abc=c^2\left(a+b\right)\)

Bây giờ chỉ cần chứng minh ( a + b ) là số chính phương nx là xog !

Gọi \(ƯCLN\left(a-c;b-c\right)=d\left(d\inℕ^∗\right)\)

\(\Rightarrow\hept{\begin{cases}a-c⋮d\\b-c⋮d\end{cases}\Rightarrow}\left(a-c\right)-\left(b-c\right)⋮d\)

                            \(\Rightarrow a-b⋮d\)

Mà \(\left(a;b\right)=1\)

\(\Rightarrow d=1\)

Hay \(\left(a-c;b-c\right)=1\)

Mà \(\left(a-c\right)\left(b-c\right)=c^2\)là số chính phường

Nên a - c và b - c đều là số chính phương

Đặt \(\hept{\begin{cases}a-c=x^2\\b-c=y^2\end{cases}\left(x;y\inℕ\right)}\)

\(\Rightarrow x^2.y^2=\left(a-c\right)\left(b-c\right)\)

\(\Leftrightarrow x^2y^2=c^2\)

\(\Leftrightarrow xy=c\)( Do xy và c đều dương )

Ta có : \(\left(a-c\right)+\left(b-c\right)=x^2+y^2\)

\(\Leftrightarrow a+b-2c=x^2+y^2\)

\(\Leftrightarrow a+b=x^2+2c+y^2\)

\(\Leftrightarrow a+b=x^2+2xy+y^2\)

\(\Leftrightarrow a+b=\left(x+y\right)^2\)là số chính phương

Do đó : \(abc=c^2.\left(x+y\right)^2=\left(cx+cy\right)^2\)là số chính phương

Vậy .................