\(\in N\)sao cho\(\frac{11}{7}< \frac{a}{b}< \frac{23}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 1 2018

Ta có: 

\(b=\frac{31+9a}{8}\) thê vô cái còn lại được

\(\frac{11}{7}< \frac{a}{\frac{31+9a}{8}}< \frac{23}{29}\)

\(\Leftrightarrow\frac{11}{7}< \frac{8a}{31+9a}< \frac{23}{29}\)

\(\Leftrightarrow\hept{\begin{cases}56a>341+99a\\232a< 713+207a\end{cases}}\)

\(\Leftrightarrow28< a< -7\)

Không tồn tại a,b tự nhiên thỏa bài toán 

10 tháng 1 2018

tớ xin lỗi đề là 11\(\frac{11}{17}< \frac{a}{b}< \frac{23}{29}\)

10 tháng 1 2018

méc thây nhé

30 tháng 11 2019

Chúc bạn học tốt!

30 tháng 11 2019

Không có gì.

11 tháng 7 2017

thế mà cũng phải hỏi

11 tháng 7 2017

Giỏi bạn làm hộ mk cái

9 tháng 8 2019

fqaeggg

25 tháng 6 2017

em chịu chị ơi

7 tháng 7 2017

1.

Ta có: \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow ad< bc\Leftrightarrow ab+ad< ad+bc\Leftrightarrow a\left(b+d\right)< b\left(a+c\right)\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+d}\)  (1)

Lại có: \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow bc>ad\Leftrightarrow bc+cd>ad+cd\Leftrightarrow c\left(b+d\right)>d\left(a+c\right)\Leftrightarrow\frac{c}{d}>\frac{a+c}{b+d}\)  (2)

Từ (1) và (2) suy ra \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)

2.

Ta có: a(b + n) = ab + an (1)

           b(a + n) = ab + bn (2)

Trường hợp 1: nếu a < b mà n > 0 thì an < bn (3)

Từ (1),(2),(3) suy ra a(b + n) < b(a + n) => \(\frac{a}{n}< \frac{a+n}{b+n}\)

Trường hợp 2: nếu a > b mà n > 0 thì an > bn (4)

Từ (1),(2),(4) suy ra a(b + n) > b(a + n) => \(\frac{a}{b}>\frac{a+n}{b+n}\)

Trường hợp 3: nếu a = b thì \(\frac{a}{b}=\frac{a+n}{b+n}=1\)