Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 2:
\(\dfrac{\left[2\left(x-y\right)^3-7\left(y-x\right)^2-\left(y-x\right)\right]}{x-y}\)
\(=\dfrac{2\left(x-y\right)^3-7\left(x-y\right)^2+\left(x-y\right)}{x-y}\)
\(=2\left(x-y\right)^2-7\left(x-y\right)+1\)
a) Ta có: \(x^2-x-2=0\)
\(\Leftrightarrow x^2+x-2x-2=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
Ap dung Be du ta co:
\(\left\{{}\begin{matrix}2^4-2^3-3.2^2+2a+b=2.2-3\\\left(-1\right)^4-\left(-1\right)^3-3.\left(-1\right)^2-a+b=2.\left(-1\right)-3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2a+b=5\\-a+b=-4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=3\\b=-1\end{matrix}\right.\)
Câu b tương tự rồi nhé
x^2+5 x^4+2x^3+10x+a x^2+2x-5 x^4+5x^2 2x^3-5x^2+10x+a 2x^3 +10x -5x^2+a -5x^2-25 a+25
Để x4+2x3+10x+a chia hết cho đa thức x2+5 thì
\(a+25=0\Leftrightarrow a=-25\)
Thực hiện phép chia đa thức \(f\left(x\right)\)cho \(g\left(x\right)\)ta được:
\(2x^3-3x^2+ax+b=\left(x^2-x+2\right)\left(2x-1\right)+\left(a-5\right)x+\left(b+2\right)\)
Để \(f\left(x\right)\)chia hết cho \(g\left(x\right)\)thì:
\(\hept{\begin{cases}a-5=0\\b+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=5\\b=-2\end{cases}}\).
Bài 3:
\(\dfrac{f\left(x\right)}{g\left(x\right)}=\dfrac{x^4+ax^2+b}{x^2-3x+2}\)
\(=\dfrac{x^4-3x^3+2x^2+3x^3-9x^2+6x+\left(a+7\right)x^2-3x\left(a+7\right)+2\left(a+7\right)+x\left(-6+3a+7\right)+b-2a-14}{x^2-3x+2}\)
Để đây là phép chia hết thì 3a+1=0 và b-2a-14=0
=>a=-1/3; b=2a+14=-2/3+14=40/3
1. Thực hiện phép chia đa thức: ta có kết quả:
\(x^3+5x^2+3x+a=\left(x+3\right)\left(x^2+2x+b\right)+\left(-3-b\right)x+a-3b\)
Để f(x) chia hết cho x2+2x+b thì -3-b=0 và a-3b=0 <=> b=-3; a=-9
ta có hệ \(\left\{{}\begin{matrix}2^4-2^3-3\cdot2^2-2a+b=2\cdot2-3\\\left(-1\right)^4-\left(-1\right)^3-3\left(-1\right)^2+a+b=2\cdot\left(-1\right)-3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-2a+b-4=1\\a+b-1=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-3\\b=-1\end{matrix}\right.\)