Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2+4b+4\right)+\left(4c^2-4c+1\right)=0\)
\(\Leftrightarrow\left(a-1\right)^2+\left(b+1\right)^2+\left(2c-1\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}a-1=0\\b+1=0\\2c-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\b=-1\\c=\frac{1}{2}\end{cases}}\)
\(\left(a^2-2a+1\right)+\left(b^2+4b+4\right)+\left(4c^2-4c+1\right)=0.\)
\(\Leftrightarrow\left(a-1\right)^2+\left(b+2\right)^2+\left(2b-1\right)^2=0\)
Mà \(\left(a-1\right)^2\ge0\forall a\), \(\left(b+2\right)^2\ge0\forall b\),\(\left(2c-1\right)^2\ge0\forall c\)
\(\Rightarrow\hept{\begin{cases}\left(a-1\right)^2=0\\\left(b+2\right)^2=0\\\left(2c-1\right)^2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}a=1\\b=-2\\c=\frac{1}{2}\end{cases}}.\)
a2 - 2a + b2 + 4b + 4c2 - 4c + 6 = 0
\(\Leftrightarrow\)a2 - 2a + 1 + b2 + 4b + 4 + 4c2 - 4c2 + 1 = 0
\(\Leftrightarrow\)( a - 1 )2 + ( b + 2 )2 + ( 2c - 1 )2 = 0
\(\Leftrightarrow\)\(\hept{\begin{cases}\left(a-1\right)^2=0\\\left(b+2\right)^2=0\\\left(2c-1\right)^2=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}a-1=0\\b+2=0\\2c-1=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}a=1\\b=-2\\c=\frac{1}{2}\end{cases}}\)
Vậy a = 1 , b = -2 , c = \(\frac{1}{2}\)
a^2-2a+b^2+4b+4c^2-4c+6=0
<=>(a^2-2a+1)+(b^2+4b+4)+(4c^2-4c+1)=0
<=>(a-1)^2+(b+2)^2+(2c-1)^2=0
vi (a-1)^2>=0,(b+2)^2>=0,(2c-1)^2>=0
=>(a-1)^2+(b+2)^2+(2c-1)^2>=0
dau = xay ra <=>(a-1)^2=0,(b+2)^2=0,(2c-1)^2=0
<=>a-1=b+2=2c-1=0
<=>a=2,b=-2,c=1/2
vay a=2,b=-2,c=1/2
CHÚC BẠN HỌC GIỎI
a^2-2a+b^2+4b+4c^2-4c+6=0
<=>(a^2-2a+1)+(b^2+4b+4)+(4c^2-4c+1)=0
<=>(a-1)^2+(b+2)^2+(2c-1)^2=0
vi (a-1)^2>=0,(b+2)^2>=0,(2c-1)^2>=0
=>(a-1)^2+(b+2)^2+(2c-1)^2>=0
dau = xay ra <=>(a-1)^2=0,(b+2)^2=0,(2c-1)^2=0
<=>a-1=b+2=2c-1=0
<=>a=2,b=-2,c=1/2
vay a=2,b=-2,c=1/2
CHÚC BẠN HỌC GIỎI
Câu hỏi của Phạm Thị Thùy Linh - Toán lớp 8 - Học toán với OnlineMath
<=>a^2-2a+b^2+4b+4c^2-4c+1+4+1=0
<=>(a^2-2a+1)+(b^2+4b+4)+(4c^2-4c+1)=0
<=>(a-1)2+(b+2)2+(2c-1)2=0
<=>(a-1)^2=0 hoặc(b+2)^2=0 hoặc (2c-1)^2=0
+,(a-1)^2=0<=>a-1=0<=>a=1
+,(b+2)^2=0<=>b+2=0<=>b=-2
+,(2c-1)^2=0<=>2c-1=0<=>2c=1<=>c=1/2
a2 -2a+b2+4b+4c2-4c+6=0
<=>(a2-2a+1)+(b2+4b+4)+(4c2-4c+1)=0
<=>(a-1)2+(b+2)2+(2c-1)2=0
\(\left[{}\begin{matrix}a-1=0\\b+2=0\\2c-1=0\end{matrix}\right.\left[{}\begin{matrix}a=1\\b=-2\\c=\dfrac{1}{2}\end{matrix}\right.\)
Ta có: \(a^2-2a+b^2+4b+4c^2-4c+6=\)
\(=\left(a^2-2a+1\right)+\left(b^2+4b+4\right)+\left(4c^2-4c+1\right)\)= 0
\(\Leftrightarrow\left(a-1\right)^2+\left(b+2\right)^2+\left(2c-1\right)^2=0\)
Mà \(\left(a-1\right)^2+\left(b+2\right)^2+\left(2c-1\right)^2\ge0\left(\forall a;b;c\right)\)
Dấu "=" xảy ra \(\Leftrightarrow\left(a-1\right)^2=0;\left(b+2\right)^2=0;\left(2c-1\right)^2=0\)
\(\Leftrightarrow a=1;b=-2;c=\dfrac{1}{2}\)
\(a^2+2a+b^2+4b+4c^2-4c+6=0\)
\(\Leftrightarrow\left(a^2+2a+1\right)+\left(b^2+4b+4\right)+\left(4c^2-4c+1\right)=0\)
\(\Leftrightarrow\left(a+1\right)^2+\left(b+2\right)^2+\left(2c-1\right)^2=0\)
Mà \(\begin{cases}\left(a+1\right)^2\ge0\\\left(b+2\right)^2\ge0\\\left(2c-1\right)^2\ge0\end{cases}\)
\(\Rightarrow\left(a+1\right)^2+\left(b+2\right)^2+\left(2c-1\right)^2\ge0\)
\(\Rightarrow\begin{cases}a+1=0\\b+2=0\\2c-1=0\end{cases}\)\(\Rightarrow\begin{cases}a=-1\\b=-2\\c=\frac{1}{2}\end{cases}\)
\(a^2-2a+b^2+4b+4c^2-4c+6=0\)
\(=>\left(a^2-2a+1\right)+\left(b^2+4b+4\right)+\left(4c^2-4c+1\right)=0\)
\(=>\left(a^2-2.a.1+1^2\right)+\left(b^2+2.b.2+2^2\right)+\left[\left(2c\right)^2-2.2c.1+1^2\right]=0\)
\(=>\left(a-1\right)^2+\left(b+2\right)^2+\left(2c-1\right)^2=0\left(1\right)\)
Vì : \(\left(a-1\right)^2\ge0\) với mọi a
\(\left(b+2\right)^2\ge0\) với mọi b
\(\left(2c-1\right)^2\ge0\) với mọi c
=>\(\left(a-1\right)^2+\left(b+2\right)^2+\left(2c-1\right)^2\ge0\) với mọi a,b,c
Để (1) thì \(\left(a-1\right)^2=\left(b+2\right)^2=\left(2c-1\right)^2=0=>a=1;b=-2;c=\frac{1}{2}\)
Vậy........