K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 11 2014

3a + b = 114 => b 3 (Vì 114 3 và 3a 3)
(a,b) + [ a,b] = 174 => [ a,b] 3 (Vì b 3=>(a,b) 3) và 1743)
(a,b) 3 => a 3 ; mặt khác có 3a + b = 114=> b=114 – 3 a
Vì b là số tự nhiên nên phải có 3.a < 114 => a 36 và 3 a
Xét a ={ 3; 6; 0; 12; 15; 18; 21; 24; 27; 30; 33; 36} ; với b = 114 – 3 a. 
Lập bảng tính ra các giá trị (a,b) và [ a,b] theo thuật toán Euclid

Còn lại cậu tự làm nhé!

 

29 tháng 3 2018

Em tham khảo tại link dưới đây nhé.

Câu hỏi của phạm văn quyết tâm - Toán lớp 6 - Học toán với OnlineMath

Giả sử d = (a;b). Khi đó ta có:

\(\hept{\begin{cases}a=md\\b=nd\end{cases}};\left(m;n\right)=1\Rightarrow\left[a;b\right]=mnd\)

Ta có: md+2nd=48  và  3mnd+d=114

md+2nd=48⇒d(m+2n)=48

3mnd+d=114⇒d(3mn+1)=114

Suy ra d∈ƯC(48,114)=(6;3;2;1)

Nếu d = 1, ta có: 3mn+1=114⇒3mn=113

Do 113 không chia hết cho 3 nên trường hợp này ko xảy ra.

Nếu d = 2 ta có: 3mn+1=57⇒3mn=56

Do 56 không chia hết cho 3 nên trường hợp này ko xảy ra.

Nếu d = 3 ta có: 3mn+1=38⇒3mn=37

Do 37 không chia hết cho 3 nên trường hợp này ko xảy ra.

Nếu d = 6 ta có: 3mn+1=19⇒3mn=18⇒mn=6

Và m+2n=8

Suy ra m = 2, n = 3 hoặc m = 6, n = 1

Vậy a = 12, b = 36 hoặc a = 36, b = 6.

hok tốt

29 tháng 3 2018

Em tham khảo tại link dưới đây nhé.

Câu hỏi của phạm văn quyết tâm - Toán lớp 6 - Học toán với OnlineMath

Giả sử d = (a;b). Khi đó ta có:

\(\hept{\begin{cases}a=md\\b=nd\end{cases}};\left(m;n\right)=1\Rightarrow\left[a;b\right]=mnd\)

Ta có: md+2nd=48  và  3mnd+d=114

md+2nd=48⇒d(m+2n)=48

3mnd+d=114⇒d(3mn+1)=114

Suy ra d∈ƯC(48,114)=(6;3;2;1)

Nếu d = 1, ta có: 3mn+1=114⇒3mn=113

Do 113 không chia hết cho 3 nên trường hợp này ko xảy ra.

Nếu d = 2 ta có: 3mn+1=57⇒3mn=56

Do 56 không chia hết cho 3 nên trường hợp này ko xảy ra.

Nếu d = 3 ta có: 3mn+1=38⇒3mn=37

Do 37 không chia hết cho 3 nên trường hợp này ko xảy ra.

Nếu d = 6 ta có: 3mn+1=19⇒3mn=18⇒mn=6

Và m+2n=8

Suy ra m = 2, n = 3 hoặc m = 6, n = 1

Vậy a = 12, b = 36 hoặc a = 36, b = 6.

hok tốt

25 tháng 10 2021

giúp mình với  TT

 

3 tháng 2 2023

Trfjjv

 

6 tháng 9 2016

Ta có: UCLN(a;b) = 15  => a = 15m và b = 15n (Với m ; n khác 0)

Ta lại có: BCNN(a;b) = 300

Mà: a . b = BCNN(a;b) . UCLN(a;b)

=> a . b = 300 . 15 = 4500  (*)

Ta thay a = 15m và b = 15n vào (*) ta được: 15m . 15n = 4500

=> 225 . mn = 4500  => mn = 4500 : 225   => mn = 20

Do: m và n là sso tự nhiên nên mn = 4 . 5 = 1 . 20

+) Với m = 4 và n = 5 thì a = 60 và b = 75

+) Với m = 5 và n = 4 thì a = 75 và b = 60

+) Với m = 1 và n = 20 thì a = 15 và b = 300

+) Với m = 20 và n = 1 thì a = 300 và b = 15

15 tháng 1 2018

Ta có : ƯCLN ( a , b ) = 15 => a = 15m và b = 15n ( m ; n \(\ne\) 0 ).

Ta lại có : BCNN ( a ; b ) = 300

Mà a . b = BCNN ( a ; b ) . ƯCLN ( a ; b )

=> a . b = 300 . 15 = 4500 (*)

Thay a = 15m và b = 15n vào (*) ta được :

15m . 15n = 4500

<=> ( 15 . 15 ) mn = 4500

<=> 225mn = 4500

<=>       mn = 4500 : 225

<=>       mn = 20

Do m và n là số tự nhiên nên mn = 4 . 5 = 1 . 20

=> Ta có bảng :

m45120
n54201
a607515300
b756030015
7 tháng 9 2016

Ta có: \(ƯCLN\left(a,b\right)=15\Rightarrow a=15m\)    và \(b=15n\)(Với \(m;n\ne0\))

Ta lại có: \(BCNN\left(a,b\right)=300\)

Mà: a . b = BCNN(a;b) . UCLN(a;b)

=> a . b = 300 . 15 = 4500  (*)

Ta thay a = 15m và b = 15n vào (*) ta được: 15m . 15n = 4500

=> 225 . mn = 4500  => mn = 4500 : 225   => mn = 20

Do: m và n là sso tự nhiên nên mn = 4 . 5 = 1 . 20

+) Với m = 4 và n = 5 thì a = 60 và b = 75

+) Với m = 5 và n = 4 thì a = 75 và b = 60

+) Với m = 1 và n = 20 thì a = 15 và b = 300

+) Với m = 20 và n = 1 thì a = 300 và b = 15

28 tháng 2 2022

Ta có: ƯCLN(a,b)=15⇒a=15mƯCLN(a,b)=15⇒a=15m    và b=15nb=15n(Với m;n≠0m;n≠0)

Ta lại có: BCNN(a,b)=300BCNN(a,b)=300

Mà: a . b = BCNN(a;b) . UCLN(a;b)

=> a . b = 300 . 15 = 4500  (*)

Ta thay a = 15m và b = 15n vào (*) ta được: 15m . 15n = 4500

=> 225 . mn = 4500  => mn = 4500 : 225   => mn = 20

Do: m và n là sso tự nhiên nên mn = 4 . 5 = 1 . 20

+) Với m = 4 và n = 5 thì a = 60 và b = 75

+) Với m = 5 và n = 4 thì a = 75 và b = 60

+) Với m = 1 và n = 20 thì a = 15 và b = 300

+) Với m = 20 và n = 1 thì a = 300 và b = 15

6 tháng 9 2016

Do ƯCLN(a; b) = 15 => a = 15.m; b = 15.n (m;n)=1

=> BCNN(a; b) = 15.m.n = 300

=> m.n = 300 : 15 = 20

Giả sử a > b => m > n mà (m;n)=1 => \(\left[\begin{array}{nghiempt}m=20;n=1\\m=5;n=4\end{array}\right.\)

+ Với m = 20; n = 1 thì a = 20.15 = 300; b = 1.15 = 15

+ Với m = 5; n = 4 thì a = 5.15 = 75; b = 4.15 = 60

Vậy các cặp giá trị (a;b) thỏa mãn đề bài là: (300;15) ; (75;60) ; (60;75) ; (15;300)