Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử 2004 là hiệu các bình phương của hai số tự nhiên liện tiếp
Ta có: \(\left(n+1\right)^2-n^2=2004\)
\(\Leftrightarrow\left(n+1-n\right)\left(n+1+n\right)=2004\)
\(\Leftrightarrow2n+1=2004\)
\(\Leftrightarrow2n=2003\)
\(\Leftrightarrow n=\frac{2003}{2}\)
Suy ra: \(n\notinℤ\). Trái lại với giả thiết.
Vậy không tồn tại hai số tự nhiên liên tiếp nào mà hiệu các bình phương của chúng là 2004
còn bài cuối chỉ cần bạn đặt \(n^{1994}+n^{1993}=\left(n+1\right)n^{1993}\)
mà số nguyên tố nếu mình nhớ không nhầm thì thường được biểu diễn dưới dạng là 4k+1 thì phải hay còn dạng nữa mình không nhớ lắm hay là 3k+1 gì đó nữa
lâu nay lười giải quá nhưng thôi mình giải cho bạn.
câu 1: ta gọi 2 số đó là a và b. Ta có:
\(a=x^2+y^2\)
\(b=n^2+m^2\)
=> \(ab=\left(x^2+y^2\right)\left(n^2+m^2\right)\)
bạn nhân nó ra sau đó cộng thêm 2nmxy và trừ 2nmxy rồi áp dụng hằng đẳng thức 1 và 2
a)Chứng minh rằng nếu mỗi số trong hai số nguyên là tổng các bình phương của hai số nguyên nào đó thì tích của chúng có thể viết dưới dạng tổng hai bình phương
b) Chứng minh rằng tổng các bình phương của không số nguyên liên tiếp (k=3,4,5) không là số chính phương
Giả sử tìm được 2 số lẻ đó là 2m + 1 và 2n + 1 (m; n là số tự nhiên )
ta có: (2m + 1)2 + (2n +1)2 = 4m2 + 4m + 1 + 4n2 + 4n + 1 = 4.(m2 + n2 + m + n) + 2 = 4k + 2
1 Số chính phương có dạng 4k hoặc 4k + 1 . không có số chính phương nào có dạng 4k + 2 hay 4k + 3
=> (2m + 1)2 + (2n +1)2 không thể là số chình phương
=> ĐPCM
Bạn tham khảo nha :
https://olm.vn/hoi-dap/detail/57202292544.html
Hok tốt !
Tham khảo link này: https://olm.vn/hoi-dap/detail/57202292544.html