\(2^{200}\)+ \(2^{20...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 2 2018

a) Để mình hướng dẫn nhé (máy tính cầm tay fx-570VN PLUS):

Ví dụ câu a:

Ta nhập vào máy tính như sau:

\(11^{12}\)rồi bạn bấm ALPHA rồi đến dấu \(\sqrt{ }\)(có nghĩa là \(\div R\))

Rồi bạn bấm 2001, nó sẽ ra.

Lúc này màn hình đang hiển thị: \(11^{12}\div R2001\)Rồi ấn dấu " = "

chúc bạn thành công

8 tháng 2 2018

a) Để mình hướng dẫn nhé (máy tính cầm tay fx-570VN PLUS):

Ví dụ câu a:

Ta nhập vào máy tính như sau:

\(11^{12}\)rồi bạn bấm ALPHA rồi đến dấu \(\frac{ }{ }\)(có nghĩa là ÷R)

Rồi bạn bấm 2001, nó sẽ ra.

Lúc này màn hình đang hiển thị: \(11^{12}\div R2001\)Rồi ấn dấu " = ". Nó ra là: \(1568429973\)

chúc bạn thành công

8 tháng 2 2018

Chữ số tận cùng của \(2^{202}\) là 4.

Chữ số tận cùng của biểu thức A: là 7

28 tháng 5 2018

\(a,7^6+7^5-7^4=7^4\left(7^2+7-1\right)\\ =7^4\cdot55\\ \Rightarrow7^6+7^5-7^4⋮55\)

\(b,3^{n+2}-2^{n+2}+3^n-2^n\\ =3^n\cdot3^2+3^n-2^n\cdot2^2-2^n\\ =3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\\ =3^n\cdot10-2^{n-1}\cdot2\cdot5\\ =10\cdot\left(3^n-2^{n-1}\right)\\ \Rightarrow3^{n+2}-2^{n+2}+3^n-2^n⋮10\)

\(c,8^7-2^{18}=8^7-\left(2^3\right)^6\\ =8^7-8^6\\ =8^6\cdot\left(8-1\right)\\ =8^5\cdot8\cdot7\\ =8^5\cdot4\cdot14\\ \Rightarrow8^7-2^{18}⋮14\)

17 tháng 8 2019

\(a;\)

\(=0-1\)

\(=-1\)

17 tháng 8 2019

\(b;\)

\(=0-4\)

\(=-4\)

22 tháng 2 2017

BT1: 20152014 có tận cùng là 5

    20142015=2014.(20142)1007=2014.40561961007=2014.(...6) => Có tận cùng là ...4

=> 20152014-20142015 có tận cùng là ...5-...4=...1 

BT2: f(1)=a.1+b=1  (1)

       f(2)=a.2+b=4    (2)

Trừ (2) cho (1) => a=3

Thay a=3 vào (1) => b=-2

ĐS: a=3; b=-2

23 tháng 2 2017

Sao ko ai trả lời vậy?! Bộ câu của mình khó quá ak???

8 tháng 7 2019

Số có tận cùng là 9 nếu nâng lên lũy thừa bậc chẵn thì có tận cùng là 1

\(\Rightarrow\)A=\(2019^{200}\)có tận cùng là 1

Bất cứ số tự nhiên nào nếu nâng lên lũy thừa là 4n+1 thì có tận cùng là chính nó

\(\Rightarrow\)\(2018^{201}\)=\(2018^{4.50+1}\)\(\Rightarrow\)\(2018^{201}\)có tận cùng là 8

8 tháng 7 2019

Ta thấy \(9^{2k}=....1\)và \(9^{2k+1}=9\)

mà 200 là số chẵn nên \(A=2019^{200}=......1\)(tận cùng là 1)

Ta thấy \(8^{4k}=.....6\)(4k là số mũ chia hết cho 4)

nên \(B=2018^{201}=2018^{200}.2018=.....6.2018=.....8\)(tận cùng là 8)

8 tháng 7 2019

2 c/số tận cùng mà

Bài 1: 

a: Để B>0 thì (a+3)/(a-5)>0

=>a>5 hoặc a<-3

b: Để B=0 thì a=-3

c: Để B<0 thì a+3/a-5<0

=>-3<a<5

20 tháng 9 2018

1,\(\dfrac{a}{b}=\dfrac{x}{y}\) khi ay=bx

2,

a,x=\(\dfrac{-1.12}{4}\)

x=\(\dfrac{-12}{4}=-3\)

b,\(\left(\dfrac{1}{3}\right)^{2x-1}=\left(\dfrac{1}{3}\right)^5\)

\(\Rightarrow\)2x-1=5

2x=6

x=6:2=3

c,\(\dfrac{4}{7}\).x=\(\dfrac{1}{5}+\dfrac{2}{3}\)

\(\dfrac{4}{7}.x=\dfrac{3}{15}+\dfrac{10}{15}\)

\(\dfrac{4}{7}.x=\dfrac{13}{15}\)

\(x=\dfrac{13}{15}:\dfrac{4}{7}\)

x=\(\dfrac{13}{15}.\dfrac{7}{4}=\dfrac{91}{60}\)

3,ta có:\(5^{202}=\left(5^2\right)^{101}\)=\(25^{101}\)

2\(^{505}\)=\(\left(2^5\right)^{101}\)=\(32^{101}\)

vì 25<32 nên \(25^{101}< 32^{101}\) hay \(5^{202}< 2^{505}\)

20 tháng 9 2018

1) \(\dfrac{a}{b}=\dfrac{x}{y}\) khi \(a.y=b.x\)

2) \(a,\dfrac{x}{12}=\dfrac{-1}{4}\)

\(\Rightarrow4x=-12\)

\(\Rightarrow x=-\dfrac{12}{4}=-3\)

Vậy x = -3

\(b,\left(\dfrac{1}{3}\right)^{2x-1}=\dfrac{1}{243}\)

\(\left(\dfrac{1}{3}\right)^{2x-1}=\left(\dfrac{1}{3}\right)^5\)

\(\Rightarrow2x-1=5\)

\(\Rightarrow x=\dfrac{5-1}{2}=2\)

Vậy x = 2

\(c,\dfrac{4}{7}x-\dfrac{2}{3}=\dfrac{1}{5}\)

\(\dfrac{4}{7}x=\dfrac{1}{5}+\dfrac{2}{3}\)

\(\dfrac{4}{7}x=\dfrac{13}{15}\)

\(\Rightarrow x=\dfrac{13}{15}:\dfrac{4}{7}=1\dfrac{31}{60}\)

Vậy \(x=1\dfrac{31}{60}\)

3) So sánh \(5^{202}\)\(2^{505}\)

\(5^{202}=\left(5^2\right)^{101}=25^{101}\)

\(2^{505}=\left(2^5\right)^{101}=32^{101}\)

\(\Rightarrow25^{101}< 32^{101}\)

\(\Rightarrow5^{202}< 2^{505}\)