Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\frac{n}{n-3}\)có tử số lớn hơn mẫu số. \(\Rightarrow\frac{n}{n-3}>1\)
Ta lại có: \(\frac{\left(n+1\right)}{n+2}< 1\)( vì \(\frac{\left(n+1\right)}{n+2}\) có tử bé hơn mẫu)
\(\Rightarrow\frac{n}{n-3}>\frac{\left(n+1\right)}{n+2}\)
b)
Mà: \(\frac{2003.2004-1}{2003.2004}=1\)( Loại hai số giống nhau ở cả tử và mẫu: 2003 , 2004)
Còn: \(\frac{2004.2005-1}{2004.2005}=1\)
\(\Rightarrow\frac{2003.2004-1}{2003.2004}=\frac{2004.2005-1}{2004.2005}\)
P/s: Mình không chắc câu b) Nhé
Ta thấy : n > n - 3
=> \(\frac{n}{n-1}>1\)
Có : n + 1 < n + 2
=> \(\frac{n+1}{n+2}< 1\)
=> \(\frac{n}{n-3}>\frac{n+1}{n+2}\)
\(c,1.2.3...9-1.2.3...8-1.2.3...7.8^2\)
\(=1.2.3...8\left(9-1-8\right)\)
\(=1.2.3...8.0\)
\(=0\)
\(d,\frac{\left(3.4.2^{16}\right)^2}{11.2^{13}.4^{11}-16^9}\)
\(=\frac{3^2.4^2.2^{32}}{11.2^{13}.\left(2^2\right)^{11}-\left(2^4\right)^9}\)
\(=\frac{3^2.2^4.2^{32}}{11.2^{13}.2^{22}-2^{36}}\)
\(=\frac{3^2.2^{36}}{11.2^{35}-2^{36}}\)
\(=\frac{3^2.2^{36}}{2^{35}\left(11-2\right)}\)
\(=\frac{3^2.2^{36}}{2^{35}.9}\)
\(=\frac{3^2.2^{36}}{2^{35}.3^2}\)
\(=2\)
Đặt \(A=\dfrac{2003.2004-1}{2003.2004}\) và \(B=\dfrac{2004.2005-1}{2004.2005}\)
Ta có : \(A=\dfrac{2003.2004-1}{2003.2004}=\dfrac{2003.2004}{2003.2004}-\dfrac{1}{2003.2004}\)
\(=1-\dfrac{1}{2003.2004}\)
\(B=\dfrac{2004.2005-1}{2004.2005}=\dfrac{2004.2005}{2004.2005}-\dfrac{1}{2004.2005}\)
\(=1-\dfrac{1}{2004.2005}\)
Vì \(\dfrac{1}{2003.2004}>\dfrac{1}{2004.2005}\Rightarrow1-\dfrac{1}{2003.2004}< 1-\dfrac{1}{2004.2005}\)
Nên \(A< B\)
Vậy \(\dfrac{2003.2004-1}{2003.2004}< \dfrac{2004.2005-1}{2004.2005}\)
~ Học tốt ~
\(A=\frac{5}{2.1}+\frac{4}{1.11}+\frac{3}{11.14}+\frac{1}{14.15}+\frac{13}{15.28}\)
\(\frac{A}{7}=\frac{5}{2.7}+\frac{4}{7.11}+\frac{3}{11.14}+\frac{1}{14.15}+\frac{13}{15.28}\)
\(\frac{A}{7}=\frac{7-2}{2.7}+\frac{11-7}{7.11}+\frac{14-11}{11.4}+\frac{15-14}{14.15}+\frac{28-15}{15.28}\)
\(\frac{A}{7}=\frac{1}{2}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{15}+\frac{1}{15}-\frac{1}{28}=\frac{1}{2}-\frac{1}{28}=\frac{13}{28}\)
\(A=7.\frac{13}{28}\)
\(A=\frac{13}{4}\)