K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2016

1/a, f(x) - g(x) + h(x) = x3 - 2x2 + 3x +1 - x3 - x + 1 +2x2 - 1

=(x3 - x3) + (-2x2 + 2x2) + (3x - x) + (1 + 1 - 1)

=2x + 1

b, f(x) - g(x) + h(x) = 0

<=> 2x + 1 = 0

<=> 2x = -1

<=> x = -1/2

Vậy x = -1/2 là nghiệm của đa thức f(x) - g(x) + h(x)

2/ a, 5x + 3(3x + 7)-35 = 0

<=> 5x + 9x + 21 - 35 = 0

<=> 14x - 14 = 0

<=> 14(x - 1) = 0

<=> x-1 = 0 

<=> x = 1

Vậy 1 là nghiệm của đa thức 5x + 3(3x + 7) -35

b, x2 + 8x - (x2 + 7x +8) -9 =0

<=> x2 + 8x - x2 - 7x - 8 - 9 =0

<=> (x2 - x2) + (8x - 7x) + (-8 -9)

<=> x - 17 = 0

<=> x =17

Vậy 17 là nghiệm của đa thức x2 + 8x -(x2 + 7x +8) -9

3/ f(x) = g (x) <=> x3 +4x2 - 3x + 2 = x2(x + 4) + x -5

<=> x3 +4x2 - 3x + 2 = x3 + 4x2 + x - 5 

<=> -3x + 2 = x - 5

<=> -3x = x - 5 - 2 

<=> -3x = x - 7

<=>2x = 7

<=> x = 7/2 

Vậy f(x) = g(x) <=> x = 7/2

4/ có k(-2) = m(-2)2 - 2(-2) +4 = 0

=>  4m + 4 + 4 = 0

=> 4m + 8 = 0

=> 4m = -8

=> m = -2

7 tháng 4 2017

mk ngại làm lắm

3 tháng 4 2018

Căng, sự thật là nó rất căng

Nhg dù sao thì.....

1) \(A\left(x\right)=\left(x-4\right)^2-\left(2x+1\right)^2\)

Xét \(A\left(x\right)=0\)

\(\Rightarrow\left(x-4\right)^2-\left(2x+1\right)^2=0\)

\(\Rightarrow x^2-8x+16-4x^2-4x-1=0\)

\(\Rightarrow-3x^2-12x+15=0\)

\(\Rightarrow-3x^2+3x-15x+15=0\)

\(\Rightarrow-3x\left(x-1\right)-15\left(x-1\right)=0\)

\(\Rightarrow\left(x-1\right)\left(-3x-15\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-1=0\\-3x-15=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-5\end{matrix}\right.\)

2)(Sửa đề nha, sai cmnr) \(B\left(x\right)=x^3+x^2-4x-4\)

Xét \(B\left(x\right)=0\)

\(\Rightarrow x^3+x^2-4x-4=0\)

\(\Rightarrow x^2\left(x+1\right)-4\left(x+1\right)=0\)

\(\Rightarrow\left(x^2-4\right)\left(x+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x^2-4=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\pm2\\x=-1\end{matrix}\right.\)

Đó là những j mình biết khocroikhocroi

5 tháng 2 2018

1, \(\left(x-4\right)^2-\left(2x+1\right)^2=\left(x-4-2x-1\right)\left(x-4+2x+1\right)=-3\left(x+5\right)\left(x-1\right).\)

\(\orbr{\begin{cases}x+5=0\\x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-5\\x=1\end{cases}}}\)(mấy cái này áp dụng hàng đẳng thức lớp 8 mới hok)

2,\(x^3+x^2-4x-4=\left(x-2\right)\left(x^2+3x+2\right)=\left(x-2\right)\left(x+1\right)\left(x+2\right)\)

\(\orbr{\begin{cases}x=\mp2\\\end{cases}}x=-1\)

tương tụ lm tiếp nhe buồn ngủ quá rồi !

11 tháng 8 2020

3)  tìm m để x = -1 là nghiệm của đa thức M(x) = x^2 - mx +2

\(\Rightarrow M\left(x\right)=x^2-mx+2\)

\(\Leftrightarrow\left(-1\right)^2-m\left(-1\right)+2=0\)

\(\Leftrightarrow1-m\left(-1\right)=-2\)

\(\Leftrightarrow m\left(-1\right)=3\)

\(\Leftrightarrow m=-3\)

vậy với m = -3 thì x= -1 là nghiệm của đa thức M(x)

4) \(K\left(x\right)=a+b\left(x-1\right)+c\left(x-1\right)\left(x-2\right)\)

\(\Leftrightarrow K\left(1\right)=a+b\left(1-1\right)+c\left(1-1\right)\left(1-2\right)=1\)

\(\Leftrightarrow a=1\)

\(\Leftrightarrow K\left(2\right)=a+b\left(2-1\right)+c\left(2-1\right)\left(2-2\right)=3\)

\(\Leftrightarrow K\left(2\right)=a+b=3\)

\(\Leftrightarrow K\left(0\right)=a+b\left(0-1\right)+c\left(0-1\right)\left(0-2\right)=5\)

\(\Leftrightarrow a+\left(-b\right)+c2=5\)

ta có \(\hept{\begin{cases}a=1\\a+b=3\\a+\left(-b\right)+c2=5\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\1+b=3\\1+\left(-b\right)+c2=5\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\b=2\\-1+c2=5\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\b=2\\c2=6\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\b=2\\c=3\end{cases}}\)

vậy \(a=1;b=2;c=3\)

11 tháng 8 2020

1. a) Sắp xếp :

f(x) = -x5 - 7x4 - 2x3 + x4 + 4x + 9

g(x) = x5 + 7x4 + 2x3 + 2z2 - 3x - 9

b) h(x) = f(x) + g(x)

           = -x5 - 7x4 - 2x3 + x2 + 4x + 9 + x5 + 7x4 + 2x3 + 2x2 - 3x - 9

           = ( x5 - x5 ) + ( 7x4 - 7x4 ) + ( 2x3 - 2x3 ) + ( 2x2 + x2 ) - 3x + ( 9 - 9 )

           = 3x2- 3x

c) h(x) có nghiệm <=> 3x2 - 3x = 0

                             <=> 3x( x - 1 ) = 0

                             <=> 3x = 0 hoặc x - 1 = 0

                             <=> x = 0 hoặc x = 1

Vậy nghiệm của h(x) là x= 0 hoặc x = 1

2. D(x) = A(x) + B(x) - C(x)

            = 6x3 + 5x2 + x3 - x2 - ( -2x3 + 4x2 )

            = 6x3 + 5x2 + x3 - x2 + 2x3 - 4x2

            = ( 6x3 + x3 + 2x3 ) + ( 5x2 - x2 - 4x2 ) 

            = 9x3 

b) D(x) có nghiệm <=> 9x3 = 0 => x = 0 

Vậy nghiệm của D(x) là x = 0

3. M(x) = x2 - mx + 2

x = -1 là nghiệm của M(x)

=> M(-1) = (-1)2 - m(-1) + 2 = 0

=>              1 + m + 2 = 0

=>              3 + m = 0

=>              m = -3

Vậy với m = -3 , M(x) có nghiệm x = -1

4. K(x) = a + b( x - 1 ) + c( x - 1 )( x - 2 )

K(1) = 1 => a + b( 1 - 1 ) + c( 1 - 1 )( 1 - 2 ) = 1

              => a + 0b + c.0.(-1) = 1

              => a + 0 = 1

              => a = 1

K(2) = 3 => 1 + b( 2 - 1 ) + c( 2 - 1 )( 2 - 2 ) = 3

              => 1 + 1b + c.1.0 = 3

              => 1 + b + 0 = 3

              => b + 1 = 3

              => b = 2

K(0) = 5 => 1 + 5( 0 - 1 ) + c( 0 - 1 )( 0 - 2 ) = 5

              => 1 + 5(-1) + c(-1)(-2) = 5

              => 1 - 5 + 2c = 5

              => 2c - 4 = 5

              => 2c = 9

              => c = 9/2

Vậy a = 1 ; b = 2 ; c = 9/2

5 tháng 6 2017

\(f\left(x\right)=-x^5-7x^4-2x^3+x^2+4x+9\)

\(g\left(x\right)=x^5+7x^4+2x^3+2x^2-3x-9\)

\(h\left(x\right)=4x^2+x\)

Ta có :

\(h\left(x\right)=0\)

\(\Rightarrow4x^2+x=0\)

\(\Rightarrow x\left(4x+1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x=-\frac{1}{4}\end{cases}}\)

5 tháng 6 2017

a)

f( x) + g(x) = ( -x5 - 7x4 - 2x3 + x2 + 4x + 9 ) +( x5 + 7x4 + 2x3 + 2x2 - 3x - 9 )

= -x5 - 7x4 - 2x3 + x2 + 4x + 9 + x5 + 7x4 + 2x3 + 2x2 - 3x - 9

= ( -x5 + x5 ) + ( -7x4 + 7x4 ) + ( -2x3 + 2x3 ) + ( x2 + 2x2 ) + ( 4x -3x ) + ( 9 - 9 )

= 3x2 + x

mình chỉ biết làm phần a để phần b mình nghĩ đã hihi

a: \(F\left(x\right)=-x^5-7x^4-2x^3+x^2+4x+9\)

\(G\left(x\right)=x^5+7x^4+2x^3+2x^2-3x-9\)

\(H\left(x\right)=3x^2+x\)

b: Đặt H(x)=0

=>x(3x+1)=0

=>x=0 hoặc x=-1/3

11 tháng 4 2018

Giải:

a) Để đa thức có nghiệm

\(\Leftrightarrow x^2-64=0\)

\(\Leftrightarrow x^2=64\)

\(\Leftrightarrow x=\pm8\)

Vậy ...

d) Để đa thức có nghiệm

\(\Leftrightarrow x^2-81=0\)

\(\Leftrightarrow x^2=81\)

\(\Leftrightarrow x=\pm9\)

Vậy ...

h) Để đa thức có nghiệm

\(\Leftrightarrow x^2-6x=0\)

\(\Leftrightarrow\left(x-6\right)x=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)

Vậy ...

Các câu còn lại làm tương tự.

11 tháng 4 2018

a, x\(^2\) - 64 = 0

\(\Rightarrow\) x\(^2\) = 0 + 64

= 64

= 8\(^2\)

\(\Rightarrow\) x = 8

Vậy nghiệm của \(x^2-64\) là 8

d, \(x^2-81\) = 0

\(\Rightarrow\) x\(^2\) = 81

= 9\(^2\)

\(\Rightarrow\) x = 9

vậy nghiệm của \(x^2-81\) là 9