Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,
\(\dfrac{4^6\cdot9^5+6^9\cdot120}{-8^4\cdot3^{12}-6^{11}}=\dfrac{2^{12}\cdot3^{10}+2^9\cdot3^9\cdot2^3\cdot3\cdot5}{-2^{12}\cdot3^{12}-2^{11}\cdot3^{11}}=\dfrac{2^{12}\cdot3^{10}+2^{12}\cdot3^{10}\cdot5}{-2^{12}\cdot3^{12}-2^{11}\cdot3^{11}}=\dfrac{2^{12}\cdot3^{10}\left(1+5\right)}{-2^{11}\cdot3^{11}\left(2\cdot3-1\right)}=\dfrac{2^{13}\cdot3^{11}}{-2^{11}\cdot3^{11}\left(2\cdot3+1\right)}=\dfrac{2^2}{7}=\dfrac{4}{7}\)
b,
\(\dfrac{1}{1-\dfrac{1}{1-2-1}}+\dfrac{1}{1+\dfrac{1}{1+2-1}}=\dfrac{1}{1-\dfrac{1}{-2}}+\dfrac{1}{1+\dfrac{1}{2}}=\dfrac{1}{1+\dfrac{1}{2}}+\dfrac{1}{1+\dfrac{1}{2}}=\dfrac{2}{\dfrac{3}{2}}=\dfrac{4}{3}\)
Bạn sai rồi nhé ! Điển hình là 2 phân số cuối ! Đang 2.3-1 thì sang phân số tiếp theo bạn lại ghi 2.3+1 ! Nhưng dù sao mk vẫn tick cho bn vì đã giúp mình ! Cái lỗi mk chỉ ra mk có thể tự sửa được . Cảm ơn bn nhiều !
\(\dfrac{\dfrac{2}{3}+0,25-0,6}{\dfrac{2}{3}-0,25+0,6}:\dfrac{\dfrac{2}{5}-\dfrac{1}{6}+\dfrac{3}{7}}{\dfrac{2}{5}+\dfrac{1}{6}-\dfrac{3}{7}}\)
\(=\dfrac{\dfrac{19}{60}}{\dfrac{61}{60}}:\dfrac{\dfrac{139}{210}}{\dfrac{29}{210}}=\dfrac{19}{61}:\dfrac{139}{29}=\dfrac{551}{8479}\)
Mình không chắc lắm!! Chúc bạn học tốt!!!
`(2 1/3 + 3 1/2): (-4 1/6 + 3 1/7) +7,5`
`=(7/3 +7/2) : (-25/6 + 22/7) + 15/2`
`=35/6 : (-43/42) + 15/2`
`=-245/43+15/2`
`=155/86`
Ta có:
\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{1}{7}\)
\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)=2009.\frac{1}{7}=287\Rightarrow\frac{a+b+c}{a+b}+\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}=287\)\(\Rightarrow1+\frac{c}{a+b}+1+\frac{a}{b+c}+1+\frac{b}{c+a}=287\)
\(\Rightarrow\frac{c}{a+b}+\frac{a}{b+c}+\frac{b}{c+a}=287-3=284\)
\(\Rightarrow S=284\)
Đặt: \(L_2=\dfrac{2007}{1}+\dfrac{2006}{2}+\dfrac{2005}{3}+...+\dfrac{2}{2006}+\dfrac{1}{2007}\)
\(L_2=1+\left(\dfrac{2006}{2}+1\right)+\left(\dfrac{2005}{3}+1\right)+...+\left(\dfrac{2}{2006}+1\right)+\left(\dfrac{1}{2007}+1\right)\)
\(L_2=\dfrac{2008}{2008}+\dfrac{2008}{2}+\dfrac{2008}{3}+...+\dfrac{2008}{2006}+\dfrac{2008}{2007}\)
\(L_2=2008\left(\dfrac{1}{2}+\dfrac{1}{3}+..+\dfrac{1}{2006}+\dfrac{1}{2007}+\dfrac{1}{2008}\right)\)
\(\dfrac{L_1}{L_2}=\dfrac{1}{2008}\)
a) Vì A là tích của 99 số âm. Do đó
\(-A=\left(1-\frac{1}{4}\right)\left(1-\frac{1}{9}\right)\left(1-\frac{1}{16}\right)...\left(1-\frac{1}{100^2}\right)\)
\(=\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}....\frac{9999}{100^2}\)
\(=\frac{1.3}{2^2}.\frac{2.4}{3^2}.\frac{3.5}{4^2}....\frac{99.101}{100^2}\)
\(\Rightarrow-A=\frac{1.2.3...98.99}{2.3.4...99.100}.\frac{3.4.5...100.101}{2.3.4....99.100}\)
\(=\frac{1}{100}.\frac{101}{2}=\frac{101}{200}>\frac{1}{2}\)
Nhưng theo đề bài thì so sánh A với -1/2 mà đây là là -A với 1/2
Nên A <-1/2
Chắc chắn nhé bạn, bài tập bồi dưỡng toán của mình vừa mới làm mấy hum trước đó
a: \(=\dfrac{2}{3}\left(\dfrac{3}{60\cdot63}+\dfrac{3}{63\cdot66}+...+\dfrac{3}{117\cdot120}\right)+\dfrac{2}{2006}\)
\(=\dfrac{2}{3}\left(\dfrac{1}{60}-\dfrac{1}{63}+...+\dfrac{1}{117}-\dfrac{1}{120}\right)+\dfrac{2}{2006}\)
\(=\dfrac{2}{3}\cdot\dfrac{1}{120}+\dfrac{1}{2003}=\dfrac{1}{180}+\dfrac{1}{2003}=\dfrac{2183}{180\cdot2003}\)
b: \(=\dfrac{5}{4}\left(\dfrac{4}{40\cdot44}+\dfrac{4}{44\cdot48}+...+\dfrac{4}{76\cdot80}\right)+\dfrac{5}{2006}\)
\(=\dfrac{5}{4}\left(\dfrac{1}{40}-\dfrac{1}{80}\right)+\dfrac{5}{2006}\)
\(=\dfrac{5}{4}\cdot\dfrac{1}{80}+\dfrac{5}{2006}=\dfrac{1}{64}+\dfrac{5}{2006}=\dfrac{1163}{64192}\)
c: \(=\dfrac{1}{3}\left(\dfrac{3}{2\cdot5}+\dfrac{3}{5\cdot8}+\dfrac{3}{8\cdot11}+\dfrac{3}{11\cdot14}+\dfrac{3}{14\cdot17}+\dfrac{3}{17\cdot20}\right)\)
\(=\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{20}\right)=\dfrac{1}{3}\cdot\dfrac{9}{20}=\dfrac{3}{20}\)
a, Theo bài ra ta có:
\(M=\dfrac{2007}{1}+1+\dfrac{2006}{2}+1+.......+\dfrac{2}{2006}+1+\dfrac{1}{2007}+1-2007\)
( Ta thêm 1 vào mỗi một số hạng trong M nên phải bớt đi 2017 vì có 2017 số hạng ) ;'
\(=>M=2008+\dfrac{2008}{2}+\dfrac{2008}{3}+......+\dfrac{2008}{2007}+\dfrac{2008}{2007}-2007\)
\(=>M=\dfrac{2008}{2}+\dfrac{2008}{3}+\dfrac{2008}{4}+.....+\dfrac{2008}{2006}+\dfrac{2008}{2007}+1\)
Ta thấy xuất hiện 2008 chung nên đặt ra ngoài ta có:
\(=>M=2008\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+....+\dfrac{1}{2006}+\dfrac{1}{2007}+\dfrac{1}{2008}\right)\)
\(=>M:N=2008\)
Câu b đợi 1 chút nha.......
b, \(M=\dfrac{1}{11.13}+\dfrac{1}{13.15}+...+\dfrac{1}{31.33}\)
\(=\dfrac{1}{2}\left(\dfrac{2}{11.13}+\dfrac{2}{13.15}+...+\dfrac{2}{31.33}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{11}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{15}+...+\dfrac{1}{31}-\dfrac{1}{33}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{11}-\dfrac{1}{33}\right)\)
\(=\dfrac{1}{33}\)
\(N=\dfrac{12}{11.13.15}+\dfrac{12}{13.15.17}+...+\dfrac{12}{31.33.35}\)
\(=3\left(\dfrac{4}{11.13.15}+\dfrac{4}{13.15.17}+...+\dfrac{4}{31.33.35}\right)\)
\(=3\left(\dfrac{1}{11.13}-\dfrac{1}{13.15}+\dfrac{1}{13.15}-\dfrac{1}{15.17}+...+\dfrac{1}{31.33}-\dfrac{1}{33.35}\right)\)
\(=3\left(\dfrac{1}{11.13}-\dfrac{1}{33.35}\right)\)
\(=\dfrac{92}{5005}\)
\(\Rightarrow M:N=\dfrac{1}{33}:\dfrac{92}{5005}=\dfrac{455}{276}\)
Vậy...
\(B=1+\left(\frac{2007}{2}+1\right)+\left(\frac{2006}{3}+1\right)+...+\left(\frac{1}{2008}+1\right)=2009\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2008}+\frac{1}{2009}\right)\Rightarrow\frac{A}{B}=\frac{1}{2009}\)
?!?