Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{3^2.4^2.2^{32}}{11.2^{13}.4^{11}-16^9}=\frac{3^2.2^4.2^{32}}{11.2^{13}.2^{22}-2^{36}}=\frac{3^2.2^{36}}{11.2^{35}-2^{36}}=\frac{3^2.2^{36}}{2^{35}.\left(11-2\right)}=\frac{9.2}{9}=2\)
\(\frac{2^{19}.27^3+15.4^9.9^4}{6^9.2^{10}+12^{10}}=\frac{2^{19}.3^9+3.5.2^{18}.3^8}{6^9.2^{10}+6^{10}.2^{10}}=\frac{2^{19}.3^9+3^9.5.2^{18}}{6^9.2^{10}.\left(1+6\right)}=\frac{2^{18}.3^9.\left(2+5\right)}{2^9.3^9.2^{10}.7}=\frac{2^{18}.7}{2^{19}.7}=\frac{1}{2}\)
C2 :
\(2\cdot3^{x+2}+4\cdot3^{x+1}=10\cdot3^{2019}\)
\(2\cdot3\cdot3^{x+1}+4\cdot3^{x+1}=10\cdot3^{2019}\)
\(6\cdot3^{x+1}+4\cdot3^{x+1}=10\cdot3^{2019}\)
\(\left(6+4\right)\cdot3^{x+1}=10\cdot3^{2019}\)
\(10\cdot3^{x+1}=10\cdot3^{2019}\)
\(\Rightarrow x+1=2019\)
\(x=2019-1\)
\(x=2018\)
Vậy x = 2018
Chắc sai =))
b ) \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
= 1 - 1/2 + 1/2 - 1/3 + ... + 1/99 - 1/100
= 1 - 1/100
= 99/100
c ) Đặt A = \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\)
=> A < \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
=> A < 1 - 1/2 + 1/2 - 1/3 + ... + 1/99 - 1/100= 1 - 1/100 = 99/100 < 1
Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\)< 1
b, \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\)\(\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
c,Ta thấy
\(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
\(\frac{1}{4^2}< \frac{1}{3.4}\)
\(.....\)
\(\frac{1}{100^2}< \frac{1}{99.100}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)\(< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}< 1\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1\left(đpcm\right)\)
1 So sánh các lũy thừa
a) 912 và 277
Ta có : 912 = (32)12 = 32.12 = 324
277 = (33)7 = 33.7 = 321
Vì 24 > 21 nên 324 > 321 nên 912 > 277
b) 12580 và 25118
Ta có : 12580 = (53)80 = 53.80 = 5240
25118 = (52)118 = 52.118 = 5236
240 > 236 nên 5240 > 5236 nên 12580 > 25118
c) 1030 và 2100
Ta có : 1030 = 103. 10 = (103)10 = 100010
2100 = 210.10 = (210)10 = 102410
Vì 1000 < 1024 nên 1030 < 2100
a.
\(A=5.\left(2^2\right)^{15}.\left(3^2\right)^9-2^2.3^{20}.\left(2^3\right)^9=5.2^{30}.3^{18}-2^2.3^{20}.2^{27}\)
\(=5.2^{30}.3^{18}-3^{20}.2^{29}=2^{29}.3^{18}.\left(5.2-3^2\right)=2^{29}.3^{18}\)
\(B=5.2^9.\left(2.3\right)^{19}-7.2^{29}.\left(3^3\right)^6=5.2^9.2^{19}.3^{19}-7.2^{29}.3^{18}=5.2^{28}.3^{19}-7.2^{29}.3^{18}\)
\(=2^{28}.3^{18}.\left(5.3-7.2\right)=2^{28}.3^{18}\)
=> \(A:B=\left(2^{29}.3^{18}\right):\left(2^{28}.3^{18}\right)=\frac{\left(2^{29}.3^{18}\right)}{\left(2^{28}.3^{18}\right)}=2\)
b. kiểm tra lại đề bài nhé
#)Giải :
a)\(9^2\div\left(27^3.81^2\right)=9^2\div\left[\left(3^3\right)^3.\left(9^2\right)^2\right]=9^2\div\left(3^9.9^4\right)\)
Tự lm típ
a,\(9^2:\left(27^3.81^2\right)=3^4:\left(3^9.3^8\right)=3^4:\left(3^{9+8}\right)=3^4:3^{17}=3^{-13}\)