Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phân tích các đa thức sau thành nhân tử:
a) x(y2-z2)+y(z2-x2)+z(x2-y2)
b) x(y+z)2+y(z+x)2+z(x+y)2-4xyz
b)x(y+z)2+y(z+x)2+z(x+y)2-4xyz
=[x(y+z)2-2xyz]+[y(z+x)2-2xyz]+z(x+y)2
=x(y2+2yz+z2-2yz)+y(x2+z2+2xz-2xz)+z(x+y)2
=x(y2+z2)+y(x2+z2)+z(x+y)2
=xy2+xz2+x2y+yz2+(xz+yz)(x+y)
=xy(x+y)+z2(x+y)+(xz+yz)(x+y)
=(x+y)(xy+z2+xz+yz)
=(x+y)[x(y+z)+z(y+z)]
=(x+y)(y+z)(x+z)
a)x(y2-z2)+y(z2-x2)+z(x2-y2)
=x(y-z)(y+z)+yz2-x2y+x2z-y2z
=(y-z)(xy+xz)-x2(y-z)-yz(y-z)
=(y-z)(xy+xz-x2-yz)
=(y-z)[x(y-x)-z(y-x)]
=(y-z)(y-x)(x-z)
a ) \(\left(x+y\right)^2+\left(x-y\right)^2\)
\(=x^2+2xy+y^2+x^2-2xy+y^2\)
\(=2x^2+2y^2\)
b ) \(2.\left(x-y\right).\left(x+y\right)+\left(x+y\right)^2+\left(x-y\right)^2\)
\(=\left[\left(x-y\right)+\left(x+y\right)\right]\)
\(=2x\)
c tương tự
a) \(=x^2+2xy+y^2+x^2-2xy+y^2=2\left(x^2+y^2\right)\)
b) \(=2\left(x^2-y^2\right)+2\left(x^2+y^2\right)=2x^2+2x^2+2y^2-2y^2=4x^2\)( cái này áp dụng luôn kết quả câu trên nha)
c) \(\left(x-y+z\right)^2++2\left(x-y+z\right)\left(y-z\right)+\left(y-z\right)^2=\left(x-y+z+y-z\right)^2=x^2\)
tớ cũng giống Nguyễn Thị Bích Hậu
tích cho nha 1 cái thôi cũng được .
nhấn vào đây nhé có 2 cách làm: Chuyên đề Bồi dưỡng học sinh giỏi - Phân tích đa thức thành nhân tử - Giáo Án, Bài Giảng
t i c k mk!! 536546456545576768978045362546115346456575676868784675462552
Câu hỏi của Kim Lê Khánh Vy - Toán lớp 8 - Học toán với OnlineMath
a) \(\left(x+a\right)\left(x+2a\right)\left(x+3a\right)\left(x+4a\right)+a^4\)
\(=\left[\left(x+a\right)\left(x+4a\right)\right]\cdot\left[\left(x+2a\right)\left(x+3a\right)\right]+a^4\)
\(=\left(x^2+5ax+4a^2\right)\left(x^2+5ax+6a^2\right)+a^4\)
\(=\left(x^2+5ax+5a^2-a^2\right)\left(x^2+5ax+5a^2+a^2\right)+a^4\)\
\(=\left(x^2+5ax+5a^2\right)^2-a^4+a^4\)
\(=\left(x^2+5ax+5a^2\right)^2\)
b) Đặt \(a=x^2+y^2+z^2\); \(b=xy+yz+xz\)
\(\left(x^2+y^2+z^2\right)\left(x+y+z\right)^2+\left(xy+yz+zx\right)^2\)
\(=a\left(a+2b\right)+b^2\)
\(=a^2+2ab+b^2=\left(a+b\right)^2\)
\(=\left(x^2+y^2+z^2+xy+yz+zx\right)^2\)
a) \left(x+a\right)\left(x+2a\right)\left(x+3a\right)\left(x+4a\right)+a^4(x+a)(x+2a)(x+3a)(x+4a)+a4
=\left[\left(x+a\right)\left(x+4a\right)\right]\cdot\left[\left(x+2a\right)\left(x+3a\right)\right]+a^4=[(x+a)(x+4a)]⋅[(x+2a)(x+3a)]+a4
=\left(x^2+5ax+4a^2\right)\left(x^2+5ax+6a^2\right)+a^4=(x2+5ax+4a2)(x2+5ax+6a2)+a4
=\left(x^2+5ax+5a^2-a^2\right)\left(x^2+5ax+5a^2+a^2\right)+a^4=(x2+5ax+5a2−a2)(x2+5ax+5a2+a2)+a4\
=\left(x^2+5ax+5a^2\right)^2-a^4+a^4=(x2+5ax+5a2)2−a4+a4
=\left(x^2+5ax+5a^2\right)^2=(x2+5ax+5a2)2
b) Đặt a=x^2+y^2+z^2a=x2+y2+z2; b=xy+yz+xzb=xy+yz+xz
\left(x^2+y^2+z^2\right)\left(x+y+z\right)^2+\left(xy+yz+zx\right)^2(x2+y2+z2)(x+y+z)2+(xy+yz+zx)2
=a\left(a+2b\right)+b^2=a(a+2b)+b2
=a^2+2ab+b^2=\left(a+b\right)^2=a2+2ab+b2=(a+b)2
=\left(x^2+y^2+z^2+xy+yz+zx\right)^2=(x2+y2+z2+xy+yz+zx)2
Ta có :
\(\left(x+y\right)\left(x^2-y^2\right)+\left(y+z\right)\left(y^2-z^2\right)+\left(z+x\right)\left(z^2-x^2\right)\)
\(=\left(x+y\right)^2.\left(x-y\right)+\left(y+z\right).\left(y^2-x^2+x^2-z^2\right)+\left(z+x\right)\left(z^2-x^2\right)\)
\(=\left(x+y\right)\left(x^2-y^2\right)-\left(y+z\right)\left(x^2-y^2+z^2-x^2\right)+\left(z+x\right)\left(z^2-x^2\right)\)
\(=\left(x+y\right)\left(x^2-y^2\right)-\left(y+z\right)\left(x^2-y^2\right)-\left(y+z\right)\left(z^2-x^2\right)+\left(z+x\right)\left(z^2-x^2\right)\)
\(=\left(x^2-y^2\right)\left(x+y-y-z\right)-\left(z^2-x^2\right).\left(y+z-z-x\right)\)
\(=\left(x^2-y^2\right).\left(x-z\right)-\left(z^2-x^2\right).\left(y-x\right)\)
\(=\left(x-y\right)\left(x+y\right)\left(x-z\right)+\left(z-x\right)\left(z+x\right)\left(x-y\right)\)
\(=\left(x-y\right).\left[\left(x+y\right)\left(x-z\right)+\left(z-x\right).\left(x+z\right)\right]\)
\(=\left(x-y\right)\left(x^2-zx+xy-yz+zx+z^2-x^2-xz\right)\)
\(=\left(x-y\right)\left(z^2-zx+xy-yz\right)\)
\(=\left(x-y\right)\left[z.\left(z-x\right)-y.\left(z-x\right)\right]\)
\(=\left(x-y\right)\left(z-y\right)\left(z-x\right)\)
\(=\left(x-y\right)\left(y-z\right)\left(x-z\right)\)
Ta có :
\(\left(x+y\right)\left(x^2-y^2\right)+\left(y+z\right)\left(y^2-z^2\right)+\left(z+x\right)\left(z^2-x^2\right)\)
\(=\left(x+y\right)^2.\left(x-y\right)+\left(y+z\right).\left(y^2-x^2+x^2-z^2\right)+\left(z+x\right)\left(z^2-x^2\right)\)
\(=\left(x+y\right)\left(x^2-y^2\right)-\left(y+z\right)\left(x^2-y^2+z^2-x^2\right)+\left(z+x\right)\left(z^2-x^2\right)\)
\(=\left(x+y\right)\left(x^2-y^2\right)-\left(y+z\right)\left(x^2-y^2\right)-\left(y+z\right)\left(z^2-x^2\right)+\left(z+x\right)\left(z^2-x^2\right)\)
\(=\left(x^2-y^2\right)\left(x+y-y-z\right)-\left(z^2-x^2\right).\left(y+z-z-x\right)\)
\(=\left(x^2-y^2\right).\left(x-z\right)-\left(z^2-x^2\right).\left(y-x\right)\)
\(=\left(x-y\right)\left(x+y\right)\left(x-z\right)+\left(z-x\right)\left(z+x\right)\left(x-y\right)\)
\(=\left(x-y\right).\left[\left(x+y\right)\left(x-z\right)+\left(z-x\right).\left(x+z\right)\right]\)
\(=\left(x-y\right)\left(x^2-zx+xy-yz+zx+z^2-x^2-xz\right)\)
\(=\left(x-y\right)\left(z^2-zx+xy-yz\right)\)
\(=\left(x-y\right)\left[z.\left(z-x\right)-y.\left(z-x\right)\right]\)
\(=\left(x-y\right)\left(z-y\right)\left(z-x\right)\)
\(=\left(x-y\right)\left(y-z\right)\left(x-z\right)\)
`@` `\text {Ans}`
`\downarrow`
\(C= x^2-y^2+z^2-x^2+y^2-z^2+x^2+y^2+z^2\)
`= (x^2 - x^2 + x^2) + (-y^2 + y^2 + y^2) + (z^2 - z^2 + x^2)`
`= x^2 + y^2 + z^2`
\(C=x^2-y^2+z^2-x^2+y^2-z^2+x^2+y^2+z^2\)
\(C=\left(x^2-x^2+x^2\right)-\left(y^2-y^2-y^2\right)+\left(z^2-z^2+z^2\right)\)
\(C=x^2-\left(-y^2\right)+z^2\)
\(C=x^2+y^2+z^2\)