\(B=21\left(\sqrt{2+\sqrt{3}}+\sqrt{3-\sqrt{5}}\right)^2-6\left(\sqrt{2+...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2017

Sửa đề

\(A=\left(2-\sqrt{3}\right)\sqrt[3]{26+15\sqrt{3}}-\left(2+\sqrt{3}\right)\sqrt[3]{26-15\sqrt{3}}\)

\(=\left(2-\sqrt{3}\right)\sqrt[3]{8+12\sqrt{3}+18+3\sqrt{3}}-\left(2+\sqrt{3}\right)\sqrt[3]{8-12\sqrt{3}+18-3\sqrt{3}}\)

\(=\left(2-\sqrt{3}\right)\sqrt[3]{\left(2+\sqrt{3}\right)^3}-\left(2+\sqrt{3}\right)\sqrt[3]{\left(2-\sqrt{3}\right)^3}\)

\(=\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)-\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)=0\)

16 tháng 8 2019

Ôn tập Căn bậc hai. Căn bậc baÔn tập Căn bậc hai. Căn bậc baÔn tập Căn bậc hai. Căn bậc ba

16 tháng 8 2019

Hơi mờ nha cậu

4 tháng 12 2020

Làm luôn nhé

\(2B=21.2\left[\left(\sqrt{2+\sqrt{3}}+\sqrt{3-\sqrt{5}}\right)-6\left(\sqrt{2-\sqrt{3}}+\sqrt{3+\sqrt{5}}\right)\right]^2-2.15\sqrt{15}\)

\(2B=21\left(\sqrt{3}+1+\sqrt{5}-1\right)^2-6\left(\sqrt{3}-1+\sqrt{5}-1\right)^2-30\sqrt{15}\)

\(2B=21\left(\sqrt{3}+\sqrt{5}\right)^2-6\left(\sqrt{3}+\sqrt{5}\right)^2-30\sqrt{15}\)

\(2B=15\left(\sqrt{3}+\sqrt{5}\right)^2-30\sqrt{15}\)

\(2B=15\left(8+2\sqrt{15}\right)-30\sqrt{15}\)

\(2B=120+30\sqrt{15}-30\sqrt{5}\)

\(2B=120\)

\(B=60\)

NV
6 tháng 3 2020

\(=\frac{21}{2}\left(\sqrt{4+2\sqrt{3}}+\sqrt{6-2\sqrt{5}}\right)^2-3\left(\sqrt{4-2\sqrt{3}}+\sqrt{6+2\sqrt{5}}\right)^2-15\sqrt{15}\)

\(=\frac{21}{2}\left(\sqrt{3}+1+\sqrt{5}-1\right)^2-3\left(\sqrt{3}-1+\sqrt{5}+1\right)^2-15\sqrt{15}\)

\(=\frac{15}{2}\left(\sqrt{3}+\sqrt{5}\right)^2-15\sqrt{15}\)

\(=\frac{15}{2}\left(8+2\sqrt{15}\right)-15\sqrt{15}\)

\(=60+15\sqrt{15}-15\sqrt{15}=60\)

AH
Akai Haruma
Giáo viên
16 tháng 8 2019

a)

\(A=\sqrt{26+15\sqrt{3}}=\sqrt{\frac{52+30\sqrt{3}}{2}}=\sqrt{\frac{27+25+2\sqrt{27.25}}{2}}\)

\(=\sqrt{\frac{(\sqrt{27}+\sqrt{25})^2}{2}}=\frac{\sqrt{27}+\sqrt{25}}{\sqrt{2}}=\frac{3\sqrt{3}+5}{\sqrt{2}}=\frac{3\sqrt{6}+5\sqrt{2}}{2}\)

b)

\(B\sqrt{2}=\sqrt{8+2\sqrt{7}}-\sqrt{8-2\sqrt{7}}-2\)

\(=\sqrt{7+1+2\sqrt{7}}-\sqrt{7+1-2\sqrt{7}}-2\)

\(=\sqrt{(\sqrt{7}+1)^2}-\sqrt{(\sqrt{7}-1)^2}-2=\sqrt{7}+1-(\sqrt{7}-1)-2=0\)

\(\Rightarrow B=0\)

c)

\(C=\sqrt{8-2\sqrt{15}}-\sqrt{8+2\sqrt{15}}=\sqrt{3+5-2\sqrt{3.5}}-\sqrt{3+5+2\sqrt{3.5}}\)

\(=\sqrt{(\sqrt{5}-\sqrt{3})^2}-\sqrt{(\sqrt{5}+\sqrt{3})^2}=(\sqrt{5}-\sqrt{3})-(\sqrt{5}+\sqrt{3})=-2\sqrt{3}\)

AH
Akai Haruma
Giáo viên
16 tháng 8 2019

d)

\(D=(\sqrt{6}-2)(5+2\sqrt{6})\sqrt{5-2\sqrt{6}}\)

\(=\sqrt{2}(\sqrt{3}-\sqrt{2})(2+3+2\sqrt{2.3})\sqrt{2+3-2\sqrt{2.3}}\)

\(=\sqrt{2}(\sqrt{3}-\sqrt{2})(\sqrt{3}+\sqrt{2})^2\sqrt{(\sqrt{3}-\sqrt{2})^2}\)

\(=\sqrt{2}(\sqrt{3}-\sqrt{2})^2(\sqrt{3}+\sqrt{2})^2=\sqrt{2}[(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2})]^2\)

\(=\sqrt{2}.1^2=\sqrt{2}\)

e)

\(E=(\sqrt{10}-\sqrt{2})\sqrt{3+\sqrt{5}}=(\sqrt{5}-1).\sqrt{2}.\sqrt{3+\sqrt{5}}\)

\(=(\sqrt{5}-1)\sqrt{6+2\sqrt{5}}=(\sqrt{5}-1)\sqrt{5+1+2\sqrt{5.1}}\)

\(=(\sqrt{5}-1)\sqrt{(\sqrt{5}+1)^2}=(\sqrt{5}-1)(\sqrt{5}+1)=4\)

f)

\(F=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{20+9-2\sqrt{20.9}}}}\)

\(=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{(\sqrt{20}-3)^2}}}=\sqrt{\sqrt{5}-\sqrt{3-(\sqrt{20}-3)}}\)

\(=\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}=\sqrt{\sqrt{5}-\sqrt{5+1-2\sqrt{5}}}\)

\(=\sqrt{\sqrt{5}-\sqrt{(\sqrt{5}-1)^2}}=\sqrt{\sqrt{5}-(\sqrt{5}-1)}=\sqrt{1}=1\)

30 tháng 5 2018

câu b trc nha

B = \(\dfrac{4+\sqrt{2}-\sqrt{3}-\sqrt{6}+\sqrt{8}}{2+\sqrt{2}-\sqrt{3}}\)

= \(\dfrac{4+\sqrt{2}-\sqrt{3}-\sqrt{2}.\sqrt{3}+2\sqrt{2}}{2+\sqrt{2}-\sqrt{3}}\)

= \(\dfrac{2+2+\sqrt{2}+2\sqrt{2}-\sqrt{3}-\sqrt{6}}{2+\sqrt{2}-\sqrt{3}}\)

= \(\dfrac{\sqrt{2}\left(\sqrt{2}+1\right)+2\left(\sqrt{2}+1\right)-\sqrt{3}\left(\sqrt{2}+1\right)}{2+\sqrt{2}-\sqrt{3}}\)

= \(\dfrac{\left(\sqrt{2}+1\right)\left(2+\sqrt{2}-\sqrt{3}\right)}{2+\sqrt{2}-\sqrt{3}}\)

= \(\sqrt{2}\) + 1

30 tháng 5 2018

A = \(\dfrac{21}{2}\) . (\(\sqrt{4+2\sqrt{3}}\) + \(\sqrt{6-2\sqrt{5}}\) )2 - 15\(\sqrt{15}\)

- 3(\(\sqrt{4-2\sqrt{3}}\) +\(\sqrt{6+2\sqrt{5}}\) )2

= \(\dfrac{21}{2}\).(\(\sqrt{\left(\sqrt{3}+1\right)^2}\) + \(\sqrt{\left(\sqrt{5}-1\right)^2}\))2-15\(\sqrt{15}\)

-3(\(\sqrt{\left(\sqrt{3}-1\right)^2}\) + \(\sqrt{\left(\sqrt{5}+1\right)^2}\))2

= \(\dfrac{21}{2}\).(\(\sqrt{3}\) +1+ \(\sqrt{5}\) - 1)2 -3.(\(\sqrt{3}\) - 1 + \(\sqrt{5}\) +1)2

- 15\(\sqrt{15}\)

= \(\dfrac{21}{2}\).(8+2\(\sqrt{15}\) ) - 3(8 + 2\(\sqrt{15}\) ) -15\(\sqrt{15}\)

= \(\dfrac{15}{2}\) .2.(4+\(\sqrt{15}\) ) - 15\(\sqrt{15}\)

= 15.( 4 + \(\sqrt{15}\) ) - 15\(\sqrt{15}\)

= 15.(4+\(\sqrt{15}\) -\(\sqrt{15}\)) =15.4 = 60

Vậy A = 60.