Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x^2+2}{2xy^3}-\frac{2x+2}{2xy^3}=\frac{x^2+2-2x-2}{2xy^3}=\frac{x^2-2x}{2xy^3}=\frac{x\left(x-2\right)}{2xy^3}=\frac{x-2}{2y^3}\)
\(\frac{4}{x-5}-\frac{1}{x+5}+\frac{13x-x^2}{25-x^2}=\frac{4}{x-5}-\frac{1}{x+5}+\frac{x^2-13x}{x^2-25}\)
\(=\frac{4\left(x+5\right)}{\left(x-5\right)\left(x+5\right)}-\frac{x-5}{\left(x-5\right)\left(x+5\right)}+\frac{x^2-13x}{\left(x-5\right)\left(x+5\right)}\)
\(=\frac{4x+20-x+5+x^2-13x}{\left(x-5\right)\left(x+5\right)}\)
\(=\frac{x^2-10x+25}{\left(x-5\right)\left(x+5\right)}=\frac{\left(x-5\right)^2}{\left(x-5\right)\left(x+5\right)}=\frac{x-5}{x+5}\)
a)\(\frac{x^2+xy}{x^2-y^2}=\frac{x\left(x+y\right)}{\left(x-y\right)\left(x+y\right)}=\frac{x}{x-y}\)
b) \(\frac{4}{x+2}+\frac{3}{x-2}+\frac{-5x-2}{x^2-4}\)
\(=\frac{4\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{-5x-2}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{4x-8+3x+6-5x-2}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{2x-4}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}=\frac{2}{x+2}\)
\(\frac{1}{x-2}-\frac{1}{x+2}+\frac{4x-x^2}{4-x^2}\)
\(=\frac{x+2}{\left(x-2\right)\left(x+2\right)}-\frac{x-2}{\left(x+2\right)\left(x-2\right)}+\frac{4x-x^2}{\left(2-x\right)\left(x+2\right)}\)
\(=\frac{x+2-x+2-4x+x^2}{\left(x+2\right)\left(x-2\right)}=\frac{-4x+4+x^2}{\left(x+2\right)\left(x-2\right)}\)
\(=\frac{\left(x-2\right)^2}{\left(x+2\right)\left(x-2\right)}=\frac{x-2}{x+2}\)
\(\frac{1}{x-2}-\frac{1}{x+2}+\frac{4x-x^2}{4-x^2}\)
\(=\frac{1}{x-2}-\frac{1}{x+2}+\frac{x^2-4x}{x^2-4}\)
\(=\frac{1}{x-2}-\frac{1}{x+2}+\frac{x^2-4x}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{x+2}{\left(x-2\right)\left(x+2\right)}-\frac{x-2}{\left(x-2\right)\left(x+2\right)}+\frac{x^2-4x}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{x+2-x+2+x^2-4x}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{x^2-4x+4}{\left(x-2\right)\left(x+2\right)}=\frac{\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}=\frac{x-2}{x+2}\)
a) \(\frac{1}{x^2-x+1}+1-\frac{x^2+2}{x^3+1}\)
+) Đkxđ: \(\hept{\begin{cases}x^2-x+1\ne0\\x^3+1\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x^2-2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}\ne0\\x^3\ne-1\end{cases}\Leftrightarrow}\hept{\begin{cases}\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ne0\left(lđ\right)\\x\ne-1\end{cases}}}\)
+) \(A=\frac{1}{x^2-x+1}+1-\frac{x^2+2}{x^3+1}\)
\(=\frac{1}{x^2-x+1}+1-\frac{x^2+2}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(=\frac{x+1+x^3+1-x^2+2}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(=\frac{x^3-x^2+x+4}{\left(x+1\right)\left(x^2-x+1\right)}\)
P/s: ko chắc
Huhu luoi qua
a) \(\frac{1}{x^2-x+1}+1-\frac{x^2+2}{x^3+1}\)
\(=\frac{1}{x^2-x+1}+1-\left(\frac{x^2+2}{x^3+1}\right)\)
\(=\frac{x^5-2x^4+3x^3-2x^2+x}{x^5-x^4+x^3+x^2-x+1}\)
\(=\frac{x\left(x^4-2x^3+3x^2-2x+1\right)}{\left(x+1\right)\left(x^4-2x^3+3x^2-2x+1\right)}\)
\(=\frac{x}{x+1}\)
b) \(\frac{7}{x}-\frac{x}{x+6}+\frac{36}{x^2+6x}\)
\(=\frac{-x^2+7x+78}{x^2+6x}\)
\(=\frac{\left(-x-6\right)\left(x-13\right)}{x\left(x+6\right)}\)
\(=\frac{-x+13}{x}\)
a, \(\frac{x+1}{2x+6}+\frac{2x+3}{x^2+3x}=\frac{x+1}{2\left(x+3\right)}+\frac{3x+2}{x\left(x+3\right)}\)
\(=\frac{x^2+x}{2x\left(x+3\right)}+\frac{6x+4}{2x\left(x+3\right)}=\frac{x^2+7x+4}{2x\left(x+3\right)}\)
b, Sua de : \(\frac{3}{2x+6}-\frac{x-6}{2x^2+6x}=\frac{3}{2\left(x+3\right)}-\frac{x-6}{2x\left(x+3\right)}\)
\(=\frac{3x}{2x\left(x+3\right)}-\frac{x-6}{2x\left(x+3\right)}=\frac{2x+6}{2x\left(x+3\right)}=\frac{1}{x}\)
\(\frac{x+2}{x}+\frac{2x-1}{2-x}-\frac{x-8}{x^2-2x}\)
\(=\frac{x+2}{x}-\frac{2x-1}{x-2}-\frac{x-8}{x\left(x-2\right)}\)
\(=\frac{\left(x-2\right)^2}{x\left(x-2\right)}-\frac{x\left(2x-1\right)}{x\left(x-2\right)}-\frac{x-8}{x\left(x-2\right)}\)
\(=\frac{x^2-4x+4-2x^2+x-x+8}{x\left(x-2\right)}=\frac{-x^2-4x+12}{x\left(x-2\right)}\)
\(=\frac{\left(x+6\right)\left(x-2\right)}{x\left(x-2\right)}=\frac{x+6}{x}\)