\(x^4+64\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(x^4+64\)

\(=\left(x^2\right)^2+2\cdot x^2\cdot8+64-2\cdot x^2\cdot8\)

\(=\left(x^2+8\right)^2-16x^2\)

\(=\left(x^2-4x+8\right)\left(x^2+4x+8\right)\)

19 tháng 10 2017

a) x4 - 4x2 + 4x - 1

= ( x2)2 - [ ( 2x)2 - 2.2x + 1]

= ( x2)2 - ( 2x - 1)2

= ( x2 - 2x +1)( x2 + 2x - 1)

= ( x -1)2( x2 + 2x - 1)

b) 4x2 - y2 + 4x + 1

= (2x)2 + 2.2x +1 - y2

= ( 2x +1)2 - y2

= ( 2x + 1 - y)( 2x + 1 + y)

20 tháng 10 2017

\(\text{a) }x^4-4x^2+4x-1\\ \\=x^4-\left(4x^2-4x+1\right)\\ \\ =\left(x^2\right)^2-\left(2x-1\right)^2\\ \\=\left(x^2-2x+1\right)\left(x^2+2x-1\right)\\ \\=\left(x-1\right)^2\left(x^2+2x-1\right)\)

\(\text{b) }4x^2-y^2+4x+1\\ \\=\left(4x^2+4x+1\right)-y^2\\ \\=\left(2x+1\right)^2-y^2\\ \\=\left(2x+1+y\right)\left(2x+1-y\right)\)

Y
17 tháng 6 2019

a) \(=x^4-2x^3-3x^2+4x+4+x^2-4x+4\)

\(=x^4-2x^3-2x^2+8\)

\(=x^3\left(x-2\right)-2x\left(x-2\right)-4\left(x-2\right)\)

\(=\left(x^3-2x-4\right)\left(x-2\right)\)

\(=\left[x^2\left(x-2\right)+2x\left(x-2\right)+2\left(x-2\right)\right]\left(x-2\right)\)

\(=\left(x-2\right)^2\left(x^2+2x+2\right)\)

b) \(=x^4-x+2019\left(x^2+x+1\right)\)

\(=x\left(x^3-1\right)+2019\left(x^2+x+1\right)\)

\(=x\left(x-1\right)\left(x^2+x+1\right)+2019\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^2-x+2019\right)\)\

17 tháng 6 2019

c)\(x^4+2x^3+5x^2+4x-5\\=x^4+x^3+x^3-x^2+x^2+5x^2-x+5x-5\\ =x^2\left(x^2+x-1\right)+x\left(x^2+x-1\right)+5\left(x^2+x-1\right)=\left(x^2+x-1\right)\left(x^2+x+5\right)\)

24 tháng 8 2019

Giải giùm em \(\left(x^2+4x+8\right)^2+3x^3+14x^2+24x\) nha

24 tháng 8 2019

\(=\left(a-1\right)\left(a+4\right)\left(a+3\right)\left(a-2\right)-24=\left(a-2\right)\left(a+4\right)\left(a-1\right)\left(a+3\right)-24\)\(=\left(a^2+2a-8\right)\left(a^2+2a-3\right)-24.dat:a^2+2a-8=h\)\(\Rightarrow\left(a^2+2a-8\right)\left(a^2+2a-3\right)-24=h\left(h+5\right)-24=h^2+5h-24=\left(h-3\right)\left(h+8\right)\)\(=\left(a^2+2a-11\right)a\left(a+2\right)\)

26 tháng 8 2019

Hệ số bất định thử xem sao nha ! Check luôn nha Nguyễn Tấn Phát ~

Nháp:

Ta nhẩm nghiệm được \(a=-3\) nên khi phân tích nó sẽ có nhân tử là \(x+3\)

Giả sử khi phân tích thành nhân tử nó sẽ có dạng:\(\left(x+3\right)\left(x^3+ax^2+bx+c\right)\)

\(=x^4+ax^3+bx^2+cx+3x^3+3ax^2+3bx+3c\)

\(=x^4+\left(a+3\right)x^3+\left(3a+b\right)x^2+\left(c+3b\right)x+3c\)

Mà \(\left(x+3\right)\left(x^3+ax^2+bx+c\right)=x^4+4x^3+5x^2+7x+3\)

Cân bằng hệ số ta được:

\(a=1;b=2;c=1\)

Khi đó \(x^4+4x^3+5x^2+7x+3=\left(x+3\right)\left(x^3+x^2+2x+1\right)\)

Bài làm

Ta có:

\(x^4+4x^3+5x^2+7x+3\)

\(=\left(x^4+x^3+2x^2+x\right)+\left(3x^3+3x^2+6x+3\right)\)

\(=x\left(x^3+x^2+2x+1\right)+3\left(x^3+x^2+2x+1\right)\)

\(=\left(x+3\right)\left(x^3+x^2+2x+1\right)\)

P/S:Mik nghĩ đến đây là hết rồi:3

Y
17 tháng 6 2019

a) \(A=\left(x^2+x-2\right)\left(x+7\right)-16\)

\(=x^3+8x^2+5x-14-16\)

\(=x^3+8x^2+5x-30\)

\(=x^3+3x^2+5x^2+15x-10x-30\)

\(=x^2\left(x+3\right)+5x\left(x+3\right)-10\left(x+3\right)\)

\(=\left(x^2+5x-10\right)\left(x+3\right)\)

b) \(A=x^4-2x^3-3x^2+4x+4+x^2-4x+4\)

\(=x^4-2x^3-2x^2+8\)

\(=x^3\left(x-2\right)-2\left(x^2-4\right)\)

\(=\left(x-2\right)\left(x^3-2x-4\right)\)

\(=\left(x-2\right)\left[x^2\left(x+2\right)+2x\left(x+2\right)-2\left(x+2\right)\right]\)

\(=\left(x-2\right)\left(x+2\right)\left(x^2+2x-2\right)\)

c) \(81x^4+4=81x^4+36x^2+4-36x^2\)

\(=\left(9x^2+2\right)^2-\left(6x\right)^2\)

\(=\left(9x^2-6x+2\right)\left(9x^2+6x+2\right)\)

d) \(\left(x^2-3\right)^2+16=x^4-6x^2+25\)

\(=\left(x^4+10x^2+25\right)-16x^2\)

\(=\left(x^2+5\right)^2-\left(4x\right)^2\)

\(=\left(x^2-4x+5\right)\left(x^2+4x+5\right)\)

Y
17 tháng 6 2019

sửa câu b) xíu nha!

\(A=\left(x-2\right)\left(x^3-2x-4\right)\)

\(=\left(x-2\right)\left[x^2\left(x-2\right)+2x\left(x-2\right)+2\left(x-2\right)\right]\)

\(=\left(x-2\right)^2\left(x^2+2x+2\right)\)

21 tháng 6 2019

\(\left(x^2-6x\right)^2-2\left(x-3\right)^2-81=\left[\left(x^2-6x\right)^2-81\right]-2\left(x-3\right)^2=\left[\left(x^2-6x\right)^2-9^2\right]-2\left(x-3\right)^2=\left(x^2-6x+9\right)\left(x^2-6x-9\right)-2\left(x-3\right)^2=\left(x-3\right)^2\left(x^2-6x-9\right)-2\left(x-3\right)^2=\left(x-3\right)^2\left(x^2-6x+11\right)\)

21 tháng 6 2019

=\(\left(x-3\right)^2\left(x^2-6x-11\right)\)

nha

28 tháng 6 2020

a) \(\left(x^2+x\right)^2-2\left(x^2+x\right)-15\)

Đặt \(x^2+x=t\), đa thức trở thành : \(t^2-2t-15\)

= \(\left(t+3\right)\left(t-5\right)\)

\(=\left(x^2+x+3\right)\left(x^2+x-5\right)\)

b) \(\left(a+b+c\right)^3-a^3-b^3-c^3\)

\(=a^3+b^3+c^3+2ab+2ac+2bc-a^3-b^3-c^3\)

\(=2ab+2ac+2bc=2\left(ab+ac+bc\right)\)

c) \(x-1+x^{n+3}-x^n\)

\(=x-1+x^n\left(x^3-1\right)\)

\(=x-1+x^n\left(x-1\right)\left(x^2+x+1\right)\)

\(=\left(x-1\right)\left(x^{n+2}+x^{n+1}+x^n+1\right)\)

d) \(2x^4-7x^3-2x^2+13x+6\)

\(=\left(2x^4+2x^3\right)-\left(9x^3+9x^2\right)+\left(7x^2+7x\right)+\left(6x+6\right)\)

\(=\left(x+1\right)\left(2x^3-9x^2+7x+6\right)\)

\(=\left(x+1\right)\left[\left(2x^3+x^2\right)-\left(10x^2+5x\right)+\left(12x+6\right)\right]\)

\(=\left(x+1\right)\left(2x+1\right)\left(x^2-5x+6\right)\)

\(=\left(x+1\right)\left(2x+1\right)\left(x-2\right)\left(x-3\right)\)

28 tháng 6 2020

Chữa lại câu b :3

\(x^8+x+1\)

\(=\left(x^8+x^7+x^6\right)-\left(x^7+x^6+x^5\right)+\left(x^5+x^4+x^3\right)-\left(x^4+x^3+x^2\right)+\left(x^2+x+1\right)\)

\(=x^6\left(x^2+x+1\right)-x^5\left(x^2+x+1\right)+x^3\left(x^2+x+1\right)-x^2\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^6-x^5+x^3-x^2+1\right)\)

Chúc bạn học tốt!!!