Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^5+x^4+1\)
\(=x^5-x^3-x^2-x^4+x^2+x+x^3-x-1\)
\(=x^2\left(x^2-x-1\right)-x\left(x^3-x-1\right)+\left(x^3-x-1\right)\)
\(=\left(x^2-x+1\right)\left(x^3-x-1\right)\)
\(x^5+x^4+1=x^5+x^4+x^3-x^3+1=x^3\left(x^2+x+1\right)-\left(x^3-1\right)=x^3\left(x^2+x+1\right)-\left(x-1\right)\left(x^2+x+1\right)=\left(x^3-x+1\right)\left(x^2+x+1\right)\)
phân tích đa thức thành nhân tử nên không có vế phải bạn ơi
Ta có tổng quát: \(\left(ax^2+bx+c\right)\)\(\left(mx^2+nx+p\right)\)\(\circledast\)
-Nhân ra ta được: \(amx^4+\left(an+bm\right)x^3+\left(ap+bn+cm\right)x^2+\left(bp+cn\right)x+cp\)
-Áp dụng phương pháp hệ số bất định, ta có:
am=1
an+bm=4 (1)
ap+bn+cm=6 (2)
bp+cn=4 (3)
cp=5
-Xét a=m=1 và c=1, p=5
thay vào (1), ta được: n+b=4 (4)
thay vào (3), ta được: n+5b=4 (5)
từ (4),(5)\(\Rightarrow\)n=4 và b=0
giờ thay tất cả vào phương trình (3), ta được: 5+0+1=6 (T/M)
\(\Rightarrow\)Thay vào\(\circledast\), ta được: \(\left(x^2+1\right)\left(x^2+4x+5\right)\)
Cách 2: Ta tách \(6x^2\) thành \(5x^2+x^2\)
ta được: \(x^4+4x^3+5x^2+x^2+4x+5\)
\(\Leftrightarrow x^2\left(x^2+4x+5\right)+\left(x^2+4x+5\right)\)
\(\Leftrightarrow\left(x^2+1\right)\left(x^2+4x+5\right)\)
a) =x3-2x2+6x2-12x -12x +24
= x2(x-2)+6x(x-2)-12(x-2)
= (x-2)(x2+6x-12)
mk giải đc câu a thôi, bn zô jup mk lại vs
\(a,x^3+4x^2-24x+24\)
\(=x^3+6x^2-12x-2x^2-12x+24\)
\(=\left(x^3-2x^2\right)+\left(6x^2-12x\right)-\left(12x-24\right)\)
\(=x^2\left(x-2\right)+6x\left(x-2\right)-12\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2+6x-12\right)\)
a, 4x2 - 4x - 3
=4x2-2x+6x-3
=2x(2x-1)+3(2x-1)
=(2x+3)(2x-1)
b, x3 - x2 - 4
= x3-x2+0x-4
= x3-2x2+x2-2x+2x-4
= (x3-2x2)+(x2-2x)+(2x-4)
= x2(x-2)+x(x-2)+2(x-2)
=(x-2)(x2+x+2)
c, 64x4+y4
=64x4+16x2y2+y4-16x2y2
= (8x2+y2)2-16x2y2
= (8x2+y2-4xy)(8x2+y2+4xy)
1, \(x^3+8x^2+17x+10=\left(x^3+x^2\right)+\left(7x^2+7x\right)+\left(10x+10\right)\)
\(=x^2\left(x+1\right)+7x\left(x+1\right)+10\left(x+1\right)\)\(=\left(x+1\right)\left(x^2+7x+10\right)=\left(x+1\right)\left(x+2\right)\left(x+5\right)\)
2. \(2x^3-3x^2+3x-1=\left(2x^3-x^2\right)-\left(2x^2-x\right)+\left(2x-1\right)\)
\(=x^2\left(2x-1\right)-x\left(2x-1\right)+\left(2x-1\right)\)
\(=\left(2x-1\right)\left(x^2-x+1\right)\)
3. \(x^4+x^2+1=\left(x^4+1\right)+x^2=\left(x^2+1\right)^2-2x^2+x^2\)\(=\left(x^2+1\right)^2-x^2=\left(x^2+x+1\right)\left(x^2-x+1\right)\)
4. \(81x^4+4=\left(9x^2\right)^2+2^2=\left(9x^2+2\right)^2-2.9x^2.2=\left(9x^2+2\right)^2-\left(6x\right)^2\)
\(=\left(9x^2+6x+2\right)\left(9x^2-6x+2\right)\)
x4 + 1024 = x4 + 64x2 + 1024 - 64x2
= (x2 + 32)2 - (8x)2
= (x2 - 8x + 32)(x2 + 8x + 32)