Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x+2)(x+3)(x+4)(x+5)-24
= [(x+2)(x+5)][(x+3)(x+4)] -24
=(x^2+7x+10)(x^2+7x+12)-24
thay x^2+7x+11=y
=> (y-1)(y+1)-24=y^2-1^2-24=y^2-25=(y-5)(y+5)
= (x^2+7x+11-5)(x^2+7x+11+5)=(x^2+7x+6)(x^2+7x+16)=(x^2+x+6x+6)(x^2+7x+16)=[x(x+1)+6(x+1)]((x^2+7x+16)=(x+1)(x+6)(x^2+7x+16)
(x + 2)(x + 3)(x + 5)(x + 7) - 24
= [(x + 2)(x + 5)][(x + 3)(x + 4)] - 24
=(x2 + 7x + 10)(x2 + 7x +12) - 24
Đặt x2 + 7x + 11 = t ; ta có:
(t - 1)(t + 1) - 24
= t2 - 12 - 24
= t2 - 25
= (t - 5)(t + 5)
Thay t = x2 + 7x + 11 ta được:
(x2 + 7x + 11 - 5)(x2 + 7x +11 + 5)
= (x2 + 7x + 6)(x2 + 7x + 16)
= (x + 1)(x + 6)(x2 + 7x + 16)
Chúc bn học tốt
(x + 1)(x + 2)(x + 3)(x + 4) - 24
= [(x + 1)(x + 4)][(x + 2)(x + 3)] - 24
= (x2 + 4x + x +4)(x2 + 3x + 2x + 12) - 24
= (x2 + 5x + 4)(x2 + 5x + 12) - 24
Đặt t = x2 + 5x + 8
Ta có: x2 + 5x + 4 = x2 + 5x + 8 - 4 (1)
x2 + 5x + 12 = x2 + 5x + 8 + 4 (2)
Thay t = x2 + 5x + 8 vào (1) và (2), ta có:
⇒ (t - 4)(t + 4) - 24
= t2 - 16 - 24
= t2 - 40
= (t - \(\sqrt{40}\))(t + \(\sqrt{40}\))
= (x2 + 5x + 8 - \(\sqrt{40}\))(x2 + 5x + 8 + \(\sqrt{40}\))
\(\left(x+1\right)\left(x+4\right)\left(x+2\right)\left(x+3\right)+1\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)+1\)
\(=\left(x^2+5x+4\right)^2+2\left(x^2+5x+4\right)+1\)
\(=\left(x^2+5x+4+1\right)^2\)
\(=\left(x^2+5x+5\right)^2\)
\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-8=\left(x+2\right)\left(x+5\right)\left(x+3\right)\left(x+4\right)-8\)
\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-8\)\(=\left(x^2+7x+11-1\right)\left(x^2+7x+11+1\right)-8\)
\(=\left(x^2+7x+11\right)^2-9\)
\(=\left(x^2+7x+11-3\right)\left(x^2+7x+11+3\right)=\left(x^2+7x+8\right)\left(x^2+7x+14\right)\)
a/ \(x^4+4x^2-5\)
\(=\left(x^4+4x^2+4\right)-9\)
\(=\left(x^2+2\right)^2-9\)
\(=\left(x^2+2-3\right)\left(x^2+2+3\right)\)
\(=\left(x^2-1\right)\left(x^2+5\right)\)
b/ \(5x^3-5x^2y-10x^2+10xy\)
\(=\left(5x^3-10x^2\right)-\left(5x^2y-10xy\right)\)
\(=5x^2\left(x-2\right)-5xy\left(x-2\right)\)
\(=\left(x-2\right)\left(5x^2-5xy\right)\)
\(=\left(x-2\right)5x\left(x-y\right)\)
\(-\left(x+2\right)+3\left(x^2-4\right)\)
\(=3\left(x-2\right)\left(x+2\right)-\left(x+2\right)\)
\(=\left(x+2\right)\left[3\left(x-2\right)-1\right]=\left(x+2\right)\left(3x-7\right)\)