K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2017

a) Biến đổi VT ta có :

(a2-b2)2 + (2ab)2

= a4 -2a2+b4+4a2b2

= a4+2a2b2 +b4

= (a2b2)2 = VP (đpcm)

hiha

25 tháng 6 2017

b) Biến đổi vế trái ta có :

(ax+b)2 + (a-bx)2+cx2+c2

= a2x2+2axb+b2 +a2 - 2axb+b2x2 +c2x2+ c2

= (a2+b2+c2) + x2(a2+b2+c2)

= (a2+b2+c2) (x2+1) = VP (đpcm)

oaoa

24 tháng 9 2019

Giúp tuii với huhuu

2 tháng 7 2015

câu 1 kq = (a2+b2+c2)2

 

Bạn áp dụng 7 hằng đẳng thức ta đã học từ đầu năm học lớp 8 là ra nhé

a )

\(\left(1+3a\right)^2=9a^2+6a+1\)

b )

\(\left(2a+3\right)\left(2a-3\right)=4a^2-9\)

c )

\(\left(2a^2+b^2\right)^2=4a^4+4a^2b^2+b^4\)

d )

\(\left(\dfrac{a}{2}-2b\right)^2=\dfrac{a^2}{4}-2ab+4b^2\)

e )

\(\left(a^2+5\right)\left(5-a^2\right)=25-a^2\)

f )

\(\left(\dfrac{1}{2}a-2b\right)^3=\dfrac{1}{8}a^3-\dfrac{3}{2}a^2b+6ab^2-8b^3\)

Chúc bạn học tốt !!

5 tháng 6 2017

Do \(a,b< 1\Rightarrow a^3< a^2< a< 1;b^3< b^2< b< 1\)Ta có:\(\left(1-a^2\right)\left(1-b\right)>0\Rightarrow1+a^2b>a^2b\)

\(\Rightarrow1+a^2b>a^3+b^3haya^3+b^3< 1+a^2b\)Tương tự \(b^3+c^3< 1+b^2c;c^3+a^3< 1+c^2a\)

\(\Rightarrow2a^3+2b^3+2c^3< 3+a^2b+b^2c+c^2a\)

27 tháng 1 2019

\(Xét:\\ A=\left(a^4+b^4+c^4-2a^2b^2+2b^2c^2-2c^2a^2\right)-4b^2c^2\\ \Leftrightarrow\left(a^2-b^2-c^2\right)-4b^2c^2\\ \Leftrightarrow\left(a^2-b^2-c^2+2bc\right)\left(a^2-b^2-c^2-2bc\right)\\ \Leftrightarrow\left[a^2-\left(b-c\right)^2\right]\left[a^2-\left(b+c\right)^2\right]\\ \Leftrightarrow\left(a-b+c\right)\left(a+b-c\right)\left(a-b-c\right)\left(a+b+c\right)\)

Vì a, b, c là ba cạnh của một tam giác nên A < 0

\(A< 0\Leftrightarrow B=-\left(a^4+b^4+c^4-2a^2b^2-2b^2c^2-2c^2a^2\right)>0\)