Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
Bài 2:
a) Đặt: x - y =a; y - z = b; z - x = c thì a + b + c = 0
C/M: đẳng thức phụ: a3 + b3 + c3 = 3abc
Ta có: \(a+b+c=0\)
\(\Rightarrow\)\(a+b=-c\)
\(\Rightarrow\)\(\left(a+b\right)^3=-c^3\)
\(\Rightarrow\)\(a^3+b^3+c^3=a^3+b^3-\left(a+b\right)^3=3abc\)
Vậy \(\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3=3\left(x-y\right)\left(y-z\right)\left(z-x\right)\)
a) \(\left(x^2+x\right)^2-2\left(x^2+x\right)-15\)
Đặt \(x^2+x=t\), đa thức trở thành : \(t^2-2t-15\)
= \(\left(t+3\right)\left(t-5\right)\)
\(=\left(x^2+x+3\right)\left(x^2+x-5\right)\)
b) \(\left(a+b+c\right)^3-a^3-b^3-c^3\)
\(=a^3+b^3+c^3+2ab+2ac+2bc-a^3-b^3-c^3\)
\(=2ab+2ac+2bc=2\left(ab+ac+bc\right)\)
c) \(x-1+x^{n+3}-x^n\)
\(=x-1+x^n\left(x^3-1\right)\)
\(=x-1+x^n\left(x-1\right)\left(x^2+x+1\right)\)
\(=\left(x-1\right)\left(x^{n+2}+x^{n+1}+x^n+1\right)\)
d) \(2x^4-7x^3-2x^2+13x+6\)
\(=\left(2x^4+2x^3\right)-\left(9x^3+9x^2\right)+\left(7x^2+7x\right)+\left(6x+6\right)\)
\(=\left(x+1\right)\left(2x^3-9x^2+7x+6\right)\)
\(=\left(x+1\right)\left[\left(2x^3+x^2\right)-\left(10x^2+5x\right)+\left(12x+6\right)\right]\)
\(=\left(x+1\right)\left(2x+1\right)\left(x^2-5x+6\right)\)
\(=\left(x+1\right)\left(2x+1\right)\left(x-2\right)\left(x-3\right)\)
ab(a+b)-bc(b+c)+ac(a-c)+2abc = [ab(a+b)+abc]-[bc(b+c)+abc]+ac(a-c)
=ab(a+b+c)-bc(a+b+c)+ac(a-c)
=(ab-bc)(a+b+c)+ac(a-c)
=b(a-c)(a+b+c)+ac(a-c)
=(a-c)[b(a+b+c)+ac] = (a-c)(ab+bc+ac+b2)
mk sửa thêm nha :
(a-c)(ab+bc+ac+b2) = (a-c)[(ab+ac)+(bc+b2)] = (a-c)[a(b+c)+b(b+c)]
= (a-c)(a+b)(b+c)
\(=a^3+b^3+c^3+3\left(a+b\right)\left(ab+ac+bc+c^2\right)\\ =a^3+b^3+c^3+3\left(a+b\right)\left(ab+c\left(a+b\right)+c^2\right)\\ =a^3+b^3+c^3+3ab\left(a+b\right)+3\left(a+b\right)^2c+3\left(a+b\right)c^2\\ =a^3+b^3=c^3+3a^2b+3ab^2+3\left(a+b\right)^2c+3\left(a+b\right)c^2\\ =\left(a+b\right)^3+3\left(a+b\right)^2c+3\left(a+b\right)c^2+c^3\\ =\left(a+b+c\right)^3\)