Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a)A= \(6x^2\)\(-11x+3\)
<=>A=\(6x^2\)\(-2x-9x+3\)
<=>A=(\(6x^2\)\(-2x\))-\(\left(9x-3\right)\)
=>A=\(2x\left(3x-1\right)\)\(-3\left(3x+1\right)\)
<=>A=\(2x\left(3x-1\right)+3\left(3x-1\right)\)
=>A=(3x-1)(2x+3)
\(1.\)
\(a.\)
\(\dfrac{8}{\left(x^2+3\right)\left(x^2-1\right)}+\dfrac{2}{x^2+3}+\dfrac{1}{x+1}\)
\(=\dfrac{8}{\left(x^2+3\right)\left(x^2-1\right)}+\dfrac{2\left(x^2-1\right)}{\left(x^2+3\right)\left(x^2-1\right)}+\dfrac{1\left(x-1\right)\left(x^2+3\right)}{\left(x^2-1\right)\left(x^2+3\right)}\)
\(=\dfrac{8}{\left(x^2+3\right)\left(x^2-1\right)}+\dfrac{2x^2-2}{\left(x^2+3\right)\left(x^2-1\right)}+\dfrac{x^3-x^2+3x-3}{\left(x^2-1\right)\left(x^2+3\right)}\)
\(=\dfrac{8+2x^2-2+x^3-x^2+3x-3}{\left(x^2+3\right)\left(x^2-1\right)}\)
\(=\dfrac{x^3+x^2+3x+3}{\left(x^2+3\right)\left(x^2-1\right)}\)
\(=\dfrac{x^2\left(x+1\right)+3\left(x+1\right)}{\left(x^2+3\right)\left(x^2-1\right)}\)
\(=\dfrac{\left(x^2+3\right)\left(x+1\right)}{\left(x^2+3\right)\left(x^2-1\right)}\)
\(=x-1\)
\(b.\)
\(\dfrac{x+y}{2\left(x-y\right)}-\dfrac{x-y}{2\left(x+y\right)}+\dfrac{2y^2}{x^2-y^2}\)
\(=\dfrac{x+y}{2\left(x-y\right)}-\dfrac{x-y}{2\left(x+y\right)}+\dfrac{2y^2}{\left(x-y\right)\left(x+y\right)}\)
\(=\dfrac{\left(x+y\right)^2}{2\left(x^2-y^2\right)}-\dfrac{\left(x-y\right)^2}{2\left(x^2-y^2\right)}+\dfrac{4y^2}{2\left(x^2-y^2\right)}\)
\(=\dfrac{x^2+2xy+y^2}{2\left(x^2-y^2\right)}-\dfrac{x^2-2xy+y^2}{2\left(x^2-y^2\right)}+\dfrac{4y^2}{2\left(x^2-y^2\right)}\)
\(=\dfrac{x^2+2xy+y^2-x^2+2xy-y^2+4y^2}{2\left(x^2-y^2\right)}\)
\(=\dfrac{4xy+4y^2}{2\left(x^2-y^2\right)}\)
\(=\dfrac{4y\left(x+y\right)}{2\left(x^2-y^2\right)}\)
\(=\dfrac{2y}{\left(x-y\right)}\)
Tương tự các câu còn lại
1,
a,\(2x\left(3x^2-5x+3\right)\)
\(=6x^3-10x^2+6x\)
b,\(-2x\left(x^2+5x-3\right)\)
\(=-2x^3-10x^2+6x\)
c,\(-\dfrac{1}{2}x\left(2x^3-4x+3\right)\)
\(=-x^4+2x^2-\dfrac{3}{2}x\)
Bài 2:
a) \(\left(2x-1\right)\left(x^2-5-4\right)\)
\(=\left(2x-1\right)\left(x^2-9\right)\)
\(=2x^3-18x-x^2+9\)
b) \(-\left(5x-4\right)\left(2x+3\right)\)
\(=-\left(10x^2+15x-8x-12\right)\)
\(=-10x^2-7x+12\)
c) \(\left(2x-y\right)\left(4x^2-2xy+y^2\right)\)
\(=8x^3-y^3\)
Bài 1 :
a ) \(2x\left(x+1\right)+2\left(x+1\right)=\left(x+1\right)\left(2x+2\right)=2\left(x+1\right)^2\)
b ) \(y^2\left(x^2+y\right)-zx^2-zy=y^2\left(x^2+y\right)-z\left(x^2+y\right)=\left(x^2+y\right)\left(y^2-z\right)\)
c ) \(4x\left(x-2y\right)+8y\left(2y-x\right)=4x\left(x-2y\right)-8y\left(x-2y\right)=4\left(x-2y\right)^2\)
d ) \(3x\left(x+1\right)^2-5x^2\left(x+1\right)+7\left(x+1\right)=\left(x+1\right)\left(3x^2+3x-5x^2+7\right)=\left(x+1\right)\left(3x-2x^2+7\right)\)
e ) \(x^2-6xy+9y^2=\left(x-3x\right)^2\)
Bài 1 :
f ) \(x^3+6x^2y+12xy^2+8y^3=\left(x+2y\right)^3\)
g ) \(x^3-64=\left(x-4\right)\left(x^2+4x+16\right)\)
h ) \(125x^3+y^6=\left(5x+y^2\right)\left(25x^2-5xy^2+y^4\right)\)
c, ĐKXĐ : \(\left\{{}\begin{matrix}x-1\ne0\\x-3\ne0\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x\ne1\\x\ne3\end{matrix}\right.\)
- Ta có : \(\frac{6}{x-1}-\frac{4}{x-3}=\frac{8}{2x-6}\)
=> \(\frac{12\left(x-3\right)}{2\left(x-1\right)\left(x-3\right)}-\frac{8\left(x-1\right)}{2\left(x-3\right)\left(x-1\right)}=\frac{8\left(x-1\right)}{2\left(x-3\right)\left(x-1\right)}\)
=> \(12\left(x-3\right)-8\left(x-1\right)=8\left(x-1\right)\)
=> \(12x-36-8x+8-8x+8=0\)
=> \(-4x-20=0\)
=> \(x=-5\) ( TM )
Vậy phương trình trên có tập nghiệm là \(S=\left\{-5\right\}\)
b, ĐKXĐ : \(\left\{{}\begin{matrix}x\ne0\\2x-3\ne0\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x\ne0\\x\ne\frac{3}{2}\end{matrix}\right.\)
Ta có : \(\frac{1}{2x-3}-\frac{3}{x\left(2x-3\right)}=\frac{5}{x}\)
=> \(\frac{x}{x\left(2x-3\right)}-\frac{3}{x\left(2x-3\right)}=\frac{5\left(2x-3\right)}{x\left(2x-3\right)}\)
=> \(x-3=5\left(2x-3\right)\)
=> \(x-3-10x+15=0\)
=> \(-9x=-12\)
=> \(x=\frac{4}{3}\) ( TM )
Vậy phương trình trên có nghiệm là \(S=\left\{\frac{4}{3}\right\}\)
\(a,\frac{1}{x+1}-\frac{5}{x-2}=\frac{15}{\left(x+1\right)\left(2-x\right)}\) \(Đkxđ:\left\{{}\begin{matrix}x\ne-1\\x\ne2\end{matrix}\right.\)
\(\Leftrightarrow\frac{2-x}{\left(x+1\right)\left(2-x\right)}+\frac{5x+5}{\left(2-x\right)\left(x+1\right)}=\frac{15}{\left(x+1\right)\left(2-x\right)}\)
\(\Leftrightarrow2-x+5x+5=15\)
\(\Leftrightarrow7+4x=15\)
\(\Leftrightarrow4x=8\)
\(\Leftrightarrow x=2\)
\(\Leftrightarrow Ptvn\)
\(b,\frac{1}{2x-3}-\frac{3}{x\left(2x-3\right)}=\frac{5}{x}\) \(Đkxđ:\left\{{}\begin{matrix}x\ne0\\x\ne\frac{3}{2}\end{matrix}\right.\)
\(\Leftrightarrow\frac{x}{x\left(2x-3\right)}-\frac{3}{x\left(2x-3\right)}=\frac{10x-15}{x\left(2x-3\right)}\)
\(\Leftrightarrow x-3=10x-15\)
\(\Leftrightarrow x-3-10x+15=0\)
\(\Leftrightarrow-9x+12=0\)
\(\Leftrightarrow-9x=-12\)
\(\Leftrightarrow\frac{4}{3}\)
\(c,\frac{6}{x-1}-\frac{4}{x-3}=\frac{8}{2x-6}\) \(Đkxđ:\left\{{}\begin{matrix}x\ne1\\x\ne3\end{matrix}\right.\)
\(\Leftrightarrow\frac{6x-18}{\left(x-1\right)\left(x-3\right)}-\frac{4x-4}{\left(x-1\right)\left(x-3\right)}=\frac{4x-4}{\left(x-1\right)\left(x-3\right)}\)
\(\Leftrightarrow6x-18-4x+4=4x-4\)
\(\Leftrightarrow2x-14=4x-4\)
\(\Leftrightarrow-2x=10\)
\(\Leftrightarrow x=-5\)
\(d,\frac{3}{\left(x-1\right)\left(x-2\right)}+\frac{2}{\left(x-3\right)\left(x-1\right)}=\frac{1}{\left(x-2\right)\left(x-3\right)}\) \(Đkxđ:\left\{{}\begin{matrix}x\ne1\\x\ne2\\x\ne3\end{matrix}\right.\)
\(\Leftrightarrow\frac{3x-9}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}+\frac{2x-4}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}=\frac{x-1}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}\)
\(\Leftrightarrow3x-9+2x-4=x-1\)
\(\Leftrightarrow4x-12=0\)
\(\Leftrightarrow4x=12\)
\(\Leftrightarrow x=3\)
\(\Leftrightarrow Ptvn\)
Vậy .................................
\(1,x^3-7x+6\)
\(=x^3+3x^2-3x^2-9x+2x+6\)
\(=x^2\left(x+3\right)-3x\left(x+3\right)+2\left(x+3\right)\)
\(=\left(x+3\right)\left(x^2-3x+2\right)\)
\(=\left(x+3\right)\left(x^2-2x-x+2\right)\)
\(=\left(x+3\right)\left(x-2\right)\left(x-1\right)\)
\(2,x^3-9x^2+6x+16\)
\(=x^3+x^2-10x^2-10x+16x+16\)
\(=x^2\left(x+1\right)-10x\left(x+1\right)+16\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-10x+16\right)\)
\(=\left(x+1\right)\left(x^2-2x-8x+16\right)\)
\(=\left(x+1\right)\left(x-8\right)\left(x-2\right)\)
mk ms lm hai câu thôi mà đã mệt r , bh mk lm bt mai đi học ,lúc khác lm đ cko bn
a) \(\dfrac{x^6+2x^3y^3+y^6}{x^7-xy^6}=\dfrac{\left(x^3+y^3\right)^2}{x\left(x^6-y^6\right)}\)
\(=\dfrac{\left(x^3+y^3\right)^2}{x\left(x^3-y^3\right)\left(x^3+y^3\right)}\)
\(=\dfrac{x^3+y^3}{x\left(x^3-y^3\right)}\)
b) \(\dfrac{\left(2x^2+2x\right)\left(x-2\right)^2}{\left(x^3-4x\right)\left(x+1\right)}=\dfrac{2x\left(x+1\right)\left(x-2\right)^2}{x\left(x^2-4\right)\left(x+1\right)}\)
\(=\dfrac{2x\left(x+1\right)\left(x-2\right)^2}{x\left(x-2\right)\left(x+2\right)\left(x+1\right)}\)
\(=\dfrac{2\left(x-2\right)}{x+2}\)
c) \(\dfrac{x^3-x^2y+xy^2}{x^3+y^3}=\dfrac{x\left(x^2-xy+y^2\right)}{\left(x+y\right)\left(x^2-xy+y^2\right)}\)
\(=\dfrac{x}{x+y}\)
d) \(\dfrac{a^2+b^2-c^2+2ab}{a^2-b^2+c^2+2ac}=\dfrac{\left(a^2+2ab+b^2\right)-c^2}{\left(a^2+2ac+c^2\right)-b^2}\)
\(=\dfrac{\left(a+b\right)^2-c^2}{\left(a+c\right)^2-b^2}\)
\(=\dfrac{\left(a+b-c\right)\left(a+b+c\right)}{\left(a-b+c\right)\left(a+b+c\right)}\)
\(=\dfrac{a+b-c}{a-b+c}\)
e) \(\dfrac{2x^3-7x^2-12x+45}{3x^3-19x^2+33x-9}=\dfrac{\left(x-3\right)\left(2x^2-x-15\right)}{\left(x-3\right)\left(3x^2-10x+3\right)}\)
\(=\dfrac{2x^2-x-15}{3x^2-10x+3}\)
\(=\dfrac{\left(x-3\right)\left(2x+5\right)}{\left(x-3\right)\left(3x-1\right)}\)
\(=\dfrac{2x+5}{3x-1}\)
a) \(\left(x^2+x\right)^2-2\left(x^2+x\right)-15\)
Đặt \(x^2+x=t\), đa thức trở thành : \(t^2-2t-15\)
= \(\left(t+3\right)\left(t-5\right)\)
\(=\left(x^2+x+3\right)\left(x^2+x-5\right)\)
b) \(\left(a+b+c\right)^3-a^3-b^3-c^3\)
\(=a^3+b^3+c^3+2ab+2ac+2bc-a^3-b^3-c^3\)
\(=2ab+2ac+2bc=2\left(ab+ac+bc\right)\)
c) \(x-1+x^{n+3}-x^n\)
\(=x-1+x^n\left(x^3-1\right)\)
\(=x-1+x^n\left(x-1\right)\left(x^2+x+1\right)\)
\(=\left(x-1\right)\left(x^{n+2}+x^{n+1}+x^n+1\right)\)
d) \(2x^4-7x^3-2x^2+13x+6\)
\(=\left(2x^4+2x^3\right)-\left(9x^3+9x^2\right)+\left(7x^2+7x\right)+\left(6x+6\right)\)
\(=\left(x+1\right)\left(2x^3-9x^2+7x+6\right)\)
\(=\left(x+1\right)\left[\left(2x^3+x^2\right)-\left(10x^2+5x\right)+\left(12x+6\right)\right]\)
\(=\left(x+1\right)\left(2x+1\right)\left(x^2-5x+6\right)\)
\(=\left(x+1\right)\left(2x+1\right)\left(x-2\right)\left(x-3\right)\)
Chữa lại câu b :3