Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 4x2 - 4x - 3
=4x2-2x+6x-3
=2x(2x-1)+3(2x-1)
=(2x+3)(2x-1)
b, x3 - x2 - 4
= x3-x2+0x-4
= x3-2x2+x2-2x+2x-4
= (x3-2x2)+(x2-2x)+(2x-4)
= x2(x-2)+x(x-2)+2(x-2)
=(x-2)(x2+x+2)
c, 64x4+y4
=64x4+16x2y2+y4-16x2y2
= (8x2+y2)2-16x2y2
= (8x2+y2-4xy)(8x2+y2+4xy)
\(\left(x^2-1\right)^2=4x+1\)
\(\left(x^2-1\right)\left(x^2-1\right)=4x+1\)
\(x^4-x^2-x^2+1=4x+1\)
\(x^4+1-4x-1=0\)
\(x^4-4x=0\)
\(x\left(x^3-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x^3=4\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\sqrt[3]{4}\end{cases}}\)
Ta có tổng quát: \(\left(ax^2+bx+c\right)\)\(\left(mx^2+nx+p\right)\)\(\circledast\)
-Nhân ra ta được: \(amx^4+\left(an+bm\right)x^3+\left(ap+bn+cm\right)x^2+\left(bp+cn\right)x+cp\)
-Áp dụng phương pháp hệ số bất định, ta có:
am=1
an+bm=4 (1)
ap+bn+cm=6 (2)
bp+cn=4 (3)
cp=5
-Xét a=m=1 và c=1, p=5
thay vào (1), ta được: n+b=4 (4)
thay vào (3), ta được: n+5b=4 (5)
từ (4),(5)\(\Rightarrow\)n=4 và b=0
giờ thay tất cả vào phương trình (3), ta được: 5+0+1=6 (T/M)
\(\Rightarrow\)Thay vào\(\circledast\), ta được: \(\left(x^2+1\right)\left(x^2+4x+5\right)\)
Cách 2: Ta tách \(6x^2\) thành \(5x^2+x^2\)
ta được: \(x^4+4x^3+5x^2+x^2+4x+5\)
\(\Leftrightarrow x^2\left(x^2+4x+5\right)+\left(x^2+4x+5\right)\)
\(\Leftrightarrow\left(x^2+1\right)\left(x^2+4x+5\right)\)
a, \(x^2-25-\left(x+5\right)=0\)
\(\Rightarrow x^2-5^2-\left(x+5\right)=0\)
\(\Rightarrow\left(x-5\right)\times\left(x+5\right)-\left(x+5\right)=0\)
\(\Rightarrow\left(x+5\right)\times\left(x-5-1\right)=0\)
\(\Rightarrow\left(x+5\right)\times\left(x-6\right)=0\)
\(\Rightarrow\hept{\begin{cases}x+5=0\\x-6=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=0-5=\left(-5\right)\\x=0+6=6\end{cases}}\)
b, \(\left(2x-1\right)^2-\left(4x^2-1\right)=0\)
\(\Rightarrow\left(2x-1\right)^2-\left(\left(2x\right)^2-1^2\right)=0\)
\(\Rightarrow\left(2x-1\right)^2-\left(2x-1\right)\times\left(2x+1\right)=0\)
\(\Rightarrow\left(2x-1\right)\times\left(2x-1-\left(2x+1\right)\right)=0\)
\(\Rightarrow\left(2x-1\right)\times\left(2x-1-2x-1\right)=0\)
\(\Rightarrow\left(2x-1\right)\times\left(-2\right)=0\)\(\Rightarrow\left(-4x\right)+2=0\)
\(\Rightarrow\left(-4x\right)=0-2=-2\)
\(\Rightarrow x=\frac{-2}{-4}=\frac{1}{2}\)
c, \(x^2\times\left(x^2+4\right)-x^2-4=0\)
\(\Rightarrow x^2\times\left(x^2+4\right)-\left(x^2+4\right)=0\)
\(\Rightarrow\left(x^2-1\right)\times\left(x^2+4\right)=0\)
\(\Rightarrow\hept{\begin{cases}x^2-1=0\\x^2+4=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x^2=1\\x^2=\left(-4\right)\end{cases}}\)
\(\Rightarrow x=1\)
phân tích đa thức thành nhân tử nên không có vế phải bạn ơi
a) =x3-2x2+6x2-12x -12x +24
= x2(x-2)+6x(x-2)-12(x-2)
= (x-2)(x2+6x-12)
mk giải đc câu a thôi, bn zô jup mk lại vs
\(a,x^3+4x^2-24x+24\)
\(=x^3+6x^2-12x-2x^2-12x+24\)
\(=\left(x^3-2x^2\right)+\left(6x^2-12x\right)-\left(12x-24\right)\)
\(=x^2\left(x-2\right)+6x\left(x-2\right)-12\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2+6x-12\right)\)
1) x2 - 4x + 3
= x2 - x - 3x + 3
= (x2 - x) - (3x - 3)
= x.(x - 1) - 3.(x - 1)
= (x - 1).(x - 3)
2) x2 - x - 6
= x2 + 2x - 3x - 6
= (x2 + 2x) - (3x + 6)
= x.(x + 2) - 3.(x + 2)
= (x + 2).(x - 3)
3) x2 + 5x + 4
= x2 + x + 4x + x
= (x2 + x) + (4x + x)
= x.(x + 1) + 4.(x + 1)
= (x + 1).(x + 4)
4) x2 + 5x + 6
= x2 + 2x + 3x + 6
= (x2 + 2x) + (3x + 6)
= x.(x + 2) + 3.(x + 2)
= (x + 2).(x + 3)
a,=x^2+x+3x+3
=x(x+1)+3(x+1)
=(x+3)(x+1)
b,x^2-3x+2x-6
=x(x-3)+2(x-3)
=(x+2)(x-3)
2 câu còn lại từ lm nha.........
\(4x^4+1=4x^4+4x^2+1-4x^2\)
\(=\left(2x^2\right)^2+2.2x^2+1^2-\left(2x\right)^2\)
\(=\left(2x^2+1\right)^2-\left(2x\right)^2\)
\(=\left[\left(2x^2+1\right)-2x\right].\left[\left(2x^2+1\right)+2x\right]\)
\(=\left(2x^2+1-2x\right).\left(2x^2+1+2x\right)\)
\(=\left(2x^2-2x+1\right).\left(2x^2+2x-1\right)\)
\(=\left(2x^2-2x+1\right).\left(2x^2+2x-1\right)\)
4x4+4x2+1-4x2=(2x2+1)2-(2x)2=(2x2+1-2x)(2x2+1-2x)