Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình bạn tự vẽ nhé =)))
a) Chứng minh t. giácDBA = t.giácDBH
Xét t. giácDBA ( ABD = 90O ) và t.giácDBH ( DHB = 90O ) có :
ABD = DBH ( vì BD là p/giác )
BD là cạnh chung
=) t. giácDBA = t.giácDBH ( ch-gn )
b) So sánh độ dài đoạn AD và DC
Vì t. giácDBA = t.giácDBH ( cm ở câu a )
=) AB = DH
Xét t.giác DHC ( DHC = 90O ) có :
DC là cạnh huyền
=) DC là cạnh lớn nhất
=) DC > DH
mà DH = AD
=) AD < DC
c) Chứng minh BD vuông MC
Xét t.giác BMC có :
CA là đường cao tương ứng cạnh BA ( Vì CA vuông góc vs BA )
MH là đường cao tương ứng cạnh BC ( Vì MH vuông góc s BC )
mà CA cắt MH tại D
=) D là trực tâm của t.giác BMC
mà BD đi qua D
=) BD là đường cao của tam giác BMC
=) BD vuông MC
d) Chứng minh AH song song MC
Vì AB = BA ( vì t. giácDBA = t.giácDBH )
=) t.giác BAH cân tại B
Xét t.giác BAH cân tại B ( cmt ) có :
BD là đường p/giác ( gt )
=) BD cũng đồng thời là đường cao
=) BD vuông góc vs AH
Ta có :
BD vuông góc vs AH
mà BD cũng vuông góc vs MC
=) AH // MC
=)))
a) áp dụng định lý Pytago cho tam giác ABC vuông tại A
b) \(\Delta BAD=\Delta BHD\left(ch-gn\right)\)vì:
\(\hept{\begin{cases}BDchung\\\widehat{BHD}=\widehat{BAD}=90^o\\\widehat{ABD}=\widehat{DBH}\end{cases}}\)
A B C D H
a,\(\Delta ABC\)vuông tại A , theo định lí Py - ta - go , ta có :
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2\)
\(\Rightarrow BC^2=10^2\)
\(\Leftrightarrow BC=10\)
b, xét tam giác vuông \(ABD\)và tam giác vuông \(HBD\)có
\(\widehat{BD}\)chung
Vậy \(\Delta ABD=\Delta HBD\left(ch-gn\right)\)
c , câu này mik ko hiểu , bạn bỏ qua cho mik nhé ^^
d, Do \(\Delta DHC\)vuông tại H
\(\Rightarrow DH< DC\)(đường vuông góc ngắn hơn đường xiên)
Mà \(DA=DA\)\(\left(\Delta ABD=\Delta HBD\right)\)
Vì vậy \(DA< DC\)
Chúc bạn học tốt !
Bài làm
a) Xét tam ABC vuông tại A có:
\(\widehat{ACB}+\widehat{ABC}=90^0\)( hai góc phụ nhau )
hay \(\widehat{ACB}+60^0=90^0\)
=> \(\widehat{ACB}=90^0-60^0=30^0\)
b) Xét tam giác ABE và tam giác DBE có:
\(\widehat{BAE}=\widehat{BDE}=90^0\)
Cạnh huyền: BE chung
Cạnh góc vuông: AB = BD ( gt )
=> Tam giác ABE = tam giác DBE ( cạnh huyền - cạnh góc vuông )
=> \(\widehat{ABE}=\widehat{DBE}\)( hai góc tương ứng )
=> BI là tia phân giác của góc BAC
Mà I thược BE
=> BE là tia phân giác của góc BAC
Gọi I là giao điểm BE và AD
Xét tam giác AIB và tam giác DIB có:
AB = BD ( gt )
\(\widehat{ABE}=\widehat{DBE}\)( cmt )
BI chung
=> Tam giác AIB = tam giác DIB ( c.g.c )
=> AI = ID (1)
=> \(\widehat{BIA}=\widehat{BID}\)
Ta có: \(\widehat{BIA}+\widehat{BID}=180^0\)( hai góc kề bù )
Hay \(\widehat{BIA}=\widehat{BID}=\frac{180^0}{2}=90^0\)
=> BI vuông góc với AD tại I (2)
Từ (1) và (2) => BI là đường trung trực của đoạn AD
Mà I thược BE
=> BE là đường trung trực của đoạn AD ( đpcm )
c) Vì tam giác ABE = tam giác DBE ( cmt )
=> AE = ED ( hai cạnh tương ứng )
Xét tam giác AEF và tam giác DEC có:
\(\widehat{EAF}=\widehat{EDC}=90^0\)
AE = ED ( cmt )
\(\widehat{AEF}=\widehat{DEF}\)( hai góc đối )
=> Tam giác AEF = tam giác DEC ( g.c.g )
=> AF = DC
Ta có: AF + AB = BF
DC + BD = BC
Mà AF = DC ( cmt )
AB = BD ( gt )
=> BF = BC
=> Tam giác BFC cân tại B
=> \(\widehat{BFC}=\widehat{BCF}=\frac{180^0-\widehat{FBC}}{2}\) (3)
Vì tam giác BAD cân tại B ( cmt )
=> \(\widehat{BAD}=\widehat{BDA}=\frac{180^0-\widehat{FBC}}{2}\) (4)
Từ (3) và (4) => \(\widehat{BAD}=\widehat{BFC}\)
Mà Hai góc này ở vị trí đồng vị
=> AD // FC
d) Xét tam giác ABC vuông tại A có:
\(\widehat{ACB}+\widehat{ABC}=90^0\)( hai góc phụ nhau ) (5)
Xét tam giác DEC vuông tại D có:
\(\widehat{DEC}+\widehat{ACB}=90^0\)( hai góc phụ nhau ) (6)
Từ (5) và (6) => \(\widehat{ABC}=\widehat{DEC}\)
Ta lại có:
\(\widehat{ABC}>\widehat{EBC}\)
=> AC > EC
Mà \(\widehat{EBC}=\frac{1}{2}\widehat{ABC}\)
=> EC = 1/2 AC.
=> E là trung điểm AC
Mà EC = EF ( do tam giác AEF = tam giác EDC )
=> EF = 1/2AC
=> AE = EC = EF
Và AE = ED ( cmt )
=> ED = EC
Mà EC = 1/2AC ( cmt )
=> ED = 1/2AC
=> 2ED = AC ( đpcm )
Mình chứng minh ra kiểu này cơ. không biết đề đúng hay sai!??